
· Probabilistic Reasoning

1 Why be probabilistic?

For years, machine learning notched wins in vision, speech, and games, while science remained

largely on the sidelines. When deep learning methods finally entered scientific workflows in the

late 2010s, it was probabilistic approaches that made them stick: methods that could quantify

uncertainty, incorporate prior knowledge, and do more than just predict and classify. We often

want to understand why patterns exist, quantify how certain we are, and reason about what we

don’t know.

Probabilistic reasoning provides this foundation. It’s the language for quantifying uncertainty

in measurements and conclusions, updating beliefs as we gather evidence, comparing competing

explanations for observed phenomena, and making decisions under incomplete information. Every

scientific conclusion rests on incomplete information. We observe a finite number of noisy mea-

surements and try to infer something about the underlying process. Probability theory provides

a consistent framework for this.

2 Notation and probability basics

We’ll use consistent notation throughout:

• x: observed data

• θ: parameters of interest, the quantities we want to learn

• z: latent variables, unobserved quantities in the model

The notation x ∼ p(x) means “x is a random variable distributed according to p,” or equiva-

lently, “x is drawn from p.” For example, x ∼ N (µ, σ2) means x is drawn from a Gaussian with

mean µ and variance σ2.

Density vs. probability. For continuous variables, p(x) is a probability density, not a proba-

bility. The probability of x taking any exact value is zero; instead, p(x) dx gives the probability

of x falling in a tiny interval [x, x + dx]. Densities can exceed 1 (a narrow Gaussian has high

density at its peak). To get actual probabilities, integrate: P (a ≤ x ≤ b) =
∫ b
a p(x) dx. We’ll use

p(·) for both densities and probability mass functions; context makes it clear which.

Conditional probability. The probability of A given that we know B is:

p(A | B) =
p(A,B)

p(B)
(2.1)

The intuition: conditioning on B restricts our universe to only those outcomes where B occurred.

Within that restricted universe, p(A | B) is the fraction where A also holds: the overlap p(A,B)

divided by the new total p(B). This is how we update beliefs with new information.

1

DS 595: AI Methods for Science Spring 2026

Independence. Events A and B are independent if p(A,B) = p(A)p(B). Knowing B tells us

nothing about A. For independent observations: p(x1, x2, . . . , xN | θ) =
∏

i p(xi | θ).

Marginalization. If we don’t care about some variable, integrate it out:

p(x) =

∫
p(x, z) dz (2.2)

This is how we handle nuisance parameters: integrate over them, properly propagating their

uncertainty.

−3 −2 −1 0 1 2 3

x

−3

−2

−1

0

1

2

3

y p(x, y)

0.0

0.5

1.0

p
(x

)

p(x) =
∫
p(x, y) dy

0 1

p(y)

p(y) =
∫
p(x, y) dx

Figure 1. Marginalization visualized. The central contours show a joint distribution p(x, y). The marginal

p(x) (top) is obtained by integrating out y; the marginal p(y) (right) by integrating out x.

Expectation values. The expectation of a function f(x) under distribution p(x) is:

Ep(x)[f(x)] =

∫
f(x) p(x) dx (2.3)

This is the average value of f , weighted by how probable each x is. Common examples: the

mean is E[x], the variance is E[(x−E[x])2]. The subscript on E clarifies which distribution we’re

averaging over.

Product rule. Joint probabilities factor:

p(x, z) = p(x | z)p(z) = p(z | x)p(x) (2.4)

Bayes’ theorem. The product rule’s symmetry gives us:

p(θ | x) = p(x | θ) p(θ)
p(x)

(2.5)

2

DS 595: AI Methods for Science Spring 2026

3 Forward vs. inverse problems

This distinction is fundamental to scientific inference:

• Forward problem: Given parameters θ, sample data x ∼ p(x | θ). This is what a

simulator does: plug in masses and spins, add noise, and out comes a realization of what

you might observe. The forward model is stochastic: the same parameters can produce

different data due to noise, latent variables, or intrinsic randomness.

• Inverse problem: Given data x, infer parameters θ. This is what scientific inference is

all about. Inverse problems are hard, since they’re ill-posed, with many parameter values

consistent with the data.

The forward problem is “easy” in the sense that we can sample from p(x | θ) by running the

simulator and drawing noise. The inverse problem is hard because we need to invert this: given

one sample, characterize all the parameters (or distribution of parameters rather) that could have

produced it.

Parameters

θ

masses, spins,

coefficients

Data

x

measurements,

observations

Forward (Simulation)

x ∼ p(x | θ)
Sample from the model

Inverse (Inference)

p(θ | x)
Ill-posed, many-to-one

Figure 2. Forward vs. inverse problems. The forward direction (simulation) samples data given param-

eters: x ∼ p(x | θ). The inverse direction (inference) is ill-posed: given data, we want a distribution over

parameters p(θ | x). Bayesian inference provides a principled framework for this inversion.

The key insight: first specify the forward model, then invert it. Write down how

data arise from parameters, then use Bayesian inference to go backwards from observed data to

parameter estimates.

4 The data-generating process: a worked example

Let’s make this concrete with a simple example: fitting a line to noisy data.

Setting. We measure N data points {xi} at known inputs {ti}. We believe the true relationship

is linear: x = mt+ c, but our measurements have noise. (Note: we write x = mt+ c rather than

the conventional y = mx+c to stay consistent with our notation where x denotes observed data.)

3

DS 595: AI Methods for Science Spring 2026

The forward model. We write down a story for how the data came to be:

1. There are some true parameters θ = (m, c) (the slope and intercept) characterizing our

model

2. For each input ti, the “true” value is µi = mti + c

3. We observe xi = µi + ϵi where ϵi ∼ N (0, σ2) is measurement noise

In probabilistic notation:

xi ∼ N (mti + c, σ2) (4.1)

This says: “xi is drawn from a Gaussian distribution centered at the line, with variance σ2.”

0 1 2 3 4 5

t

0

2

4

6

8

10

12

14

x

True
Max. likelihood
Data

Figure 3. Fitting a line to noisy data. Each measurement has Gaussian uncertainty σ (shown as error

bars). The gray dashed line is the true relationship; the orange line is the maximum likelihood estimate.

5 The likelihood function

The likelihood p(x | θ) answers: “If the parameters were θ, how probable is the observed data?”.

The likelihood encodes the forward model: given parameters, predict the data distribution. For

our line-fitting example:

p(xi | m, c, ti, σ) =
1√
2πσ2

exp

(
−(xi − (mti + c))2

2σ2

)
(5.1)

For independent observations, the joint likelihood is the product:

p({xi} | m, c, {ti}, σ) =
N∏

i=1

p(xi | m, c, ti, σ) (5.2)

Remark 5.1. The likelihood is a function of θ (for fixed data), not a probability distribution

over θ. We write L(θ) = p(x | θ) to emphasize this. The likelihood tells us how well each θ

“explains” the data.

4

DS 595: AI Methods for Science Spring 2026

6 Maximum likelihood estimation

Before going full Bayesian, consider a simpler approach: find the parameters that make the data

most probable.

The MLE. The maximum likelihood estimate is:

θ̂MLE = argmax
θ

p(x | θ) = argmax
θ

L(θ) (6.1)

Log-likelihoods. In practice, we work with log-likelihoods:

ℓ(θ) = log p(x | θ) (6.2)

Products become sums, which are easier numerically, and we avoid underflow when multiplying

many small probabilities.

For our line example with Gaussian noise:

ℓ(m, c) = −N

2
log(2πσ2)− 1

2σ2

N∑

i=1

(xi −mti − c)2 (6.3)

The first term is constant in (m, c). Maximizing ℓ is equivalent to minimizing
∑

i(xi −mti − c)2,

which is ordinary least squares.

Profile likelihoods. When there are nuisance parameters, we can “profile” them out. For each

value of the parameter of interest, maximize over nuisance parameters:

Lprofile(θ) = max
ϕ

L(θ, ϕ) (6.4)

1.5 2.0 2.5 3.0 3.5

Slope m

−4

−3

−2

−1

0

`(
m

)
−
`(
m̂

)

Max. likelihood
True

Figure 4. Profile likelihood for the slope parameter m, with the intercept c profiled out. The curve shows

how well each value of m can fit the data (after optimizing over c). The peak marks the MLE of m.

Likelihood ratios. Compare two hypotheses by their likelihood ratio:

Λ =
p(x | θ1)
p(x | θ0)

(6.5)

This asks: how much more probable is the data under θ1 than θ0?. Profile likelihoods let us focus

on parameters of interest; likelihood ratios let us compare specific hypotheses.

5

DS 595: AI Methods for Science Spring 2026

Quantifying uncertainty. The MLE gives a point estimate, but how certain are we? There

are several frequentist approaches (confidence intervals, bootstrap, Fisher information), but we

will focus on the Bayesian approach: compute the full posterior distribution.

7 The posterior distribution

Bayes’ theorem tells us how to update beliefs:

p(θ | x)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(x | θ) ·

prior︷︸︸︷
p(θ)

p(x)︸︷︷︸
evidence

(7.1)

• p(θ) is the prior: what we believed before seeing data

• p(x | θ) is the likelihood: how probable the data is given θ

• p(θ | x) is the posterior: what we believe after seeing data

• p(x) is the evidence: a normalizing constant (more on this later)

0 2 4 6

θ

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

(a) Prior p(θ)

0 2 4 6

θ

0.0

0.2

0.4

0.6

0.8

1.0

(b) Likelihood p(x | θ)

0 2 4 6

θ

0.0

0.2

0.4

0.6

0.8

1.0

(c) Posterior p(θ | x)

Figure 5. Bayesian inference: the prior (left) encodes initial beliefs, the likelihood (middle) peaks where

data are probable, the posterior (right) combines both.

Unlike MLE which gives a point, the posterior is a distribution. It tells us everything the data

says about the parameters, given our model and prior.

Sequential updating. Suppose we observe data one point at a time. After seeing x1, we have

posterior p(θ | x1). When x2 arrives, yesterday’s posterior becomes today’s prior:

p(θ | x1, x2) ∝ p(x2 | θ) · p(θ | x1)︸ ︷︷ ︸
previous posterior

(7.2)

Each new observation updates our beliefs. The posterior accumulates evidence: p(θ | x1, . . . , xN)

encodes everything we’ve learned from all N observations.

6

DS 595: AI Methods for Science Spring 2026

0 2 4

θ

D
en

si
ty

p(θ)

Prior
Posterior
True

0 2 4

θ

p(θ | x1)

0 2 4

θ

p(θ | x1:5)

0 2 4

θ

p(θ | x1:20)

Figure 6. Sequential Bayesian updating. Starting from the prior p(θ), each observation sharpens the

posterior: p(θ) → p(θ | x1) → p(θ | x1, x2) → · · · . The orange dashed line marks the true value.

Priors encode domain knowledge. Priors are sometimes criticized as “subjective.” But all

analysis has assumptions, and Bayesian inference makes them explicit. Priors encode physical

constraints (masses must be positive), previous measurements, and reasonable ranges. This is a

feature, not a bug. In well-identified problems with sufficient data, the prior’s influence fades as

the likelihood dominates.

Worked example. For line fitting with a flat prior on (m, c):

p(m, c | {xi}, {ti}) ∝ exp

(
− 1

2σ2

N∑

i=1

(xi −mti − c)2

)
(7.3)

This is a 2D Gaussian! The posterior mean equals the MLE, but we also get the full covariance,

including uncertainty in both parameters and their correlation.

0 1 2 3 4 5

t

0

2

4

6

8

10

12

14

x

(a) Data + posterior samples

Samples from p(θ | x)

True
Data

1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

Slope m

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

rc
ep

t
c

(b) Joint posterior

True

Figure 7. Bayesian inference for line fitting. (a) Data with measurement uncertainties; teal lines show

the range of fits consistent with the data, each a line x = mt + c for a different (m, c) pair drawn from

the posterior. (b) Joint posterior over slope m and intercept c, showing the characteristic anti-correlation:

steeper slopes require lower intercepts.

7

DS 595: AI Methods for Science Spring 2026

Using the posterior. The posterior p(θ | x) is the complete answer, but we often need sum-

maries:

• Point estimates: The posterior mean E[θ | x] or the mode (MAP estimate). Report one

number when needed, but remember you’re discarding distributional information.

• Credible intervals: A 68% credible interval [a, b] satisfies
∫ b
a p(θ | x) dθ = 0.68. The

central interval cuts off equal probability (16%) from each tail. The highest density interval

(HDI) is the narrowest interval containing that probability—better for skewed distributions

where the central interval can exclude the peak.

• Marginals: To report uncertainty on one parameter, integrate out the others: p(θ1 | x) =∫
p(θ1, θ2 | x) dθ2. The marginal propagates uncertainty including the effect of not knowing

θ2.

Of course, if possible just show the full posterior!

Parameter degeneracy. In Figure 7b, the posterior shows a strong anti-correlation between

slope m and intercept c: if the slope is steeper, the intercept must be lower to fit the data. This

is parameter degeneracy : different parameter combinations give similar predictions. The joint

posterior captures this; looking at parameters individually would miss it.

8 Bayesian model comparison

We’ve been fitting a line to our data. But how do we know a line is the right model? Maybe the

relationship is actually cubic: y = a + bx + cx2 + dx3. The cubic model can fit more patterns,

but is that extra flexibility warranted?

The evidence. The marginal likelihood (or “evidence”) answers this:

p(data | M) =

∫
p(data | θ,M) p(θ | M) dθ (8.1)

This is the probability of the data averaged over all parameter values, weighted by the prior. It

rewards models that predict the data well without needing to tune parameters precisely.

Bayes factors. To compare models, compute the ratio of evidences:

BF12 =
p(data | M1)

p(data | M2)
(8.2)

A Bayes factor of 10 means the data are 10 times more probable under model 1.

Example: linear vs. cubic. Both models can fit our data reasonably well (Figure 9). The

cubic model fits slightly better since it has more parameters to tune. But Bayes factors favor the

linear model, because the cubic model’s extra flexibility is wasted: it spreads its prior probability

over many curves that don’t match the data.

8

DS 595: AI Methods for Science Spring 2026

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

p(m | data)

0.00 0.25 0.50 0.75 1.00

Density

p(c | data)

1.5 2.0 2.5 3.0 3.5

Slope m

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

rc
ep

t
c

68
95
True value

Figure 8. Corner plot for the line-fitting posterior. Diagonal: marginal distributions p(m | data) and

p(c | data) with 68% credible intervals (shaded). Off-diagonal: joint posterior with 68% and 95% credible

regions (contours containing 68% and 95% of the probability mass).

0 1 2 3 4 5

x

0

2

4

6

8

10

12

14

y

(a) Model fits

True
Linear fit
Cubic fit
Data

Linear Cubic

−40

−39

−38

−37

−36

lo
g
p
(d

a
ta
|M

)

∆ = 2.3

BF = e∆ ≈ 10

(b) Log evidence

Figure 9. Model comparison for line-fitting data. (a) Linear (y = a+bx) and cubic (y = a+bx+cx2+dx3)

fits to the same data; both fit reasonably well. (b) Log evidence log p(data | M) for each model. The

difference ∆ = 2.3 corresponds to a Bayes factor of ≈ 10 favoring the simpler linear model.

9

DS 595: AI Methods for Science Spring 2026

Automatic Occam’s razor. Why does integrating over parameters penalize complexity? Fig-

ure 10 illustrates the geometric intuition. The evidence can be approximated as:

p(data | M) ≈ p(data | θ̂,M)× posterior volume

prior volume︸ ︷︷ ︸
Occam factor

(8.3)

A complex model with many parameters has a large prior volume, since it can fit many possible

datasets. But after seeing data, the posterior concentrates in a small region. The ratio (posterior

volume / prior volume) is tiny: most of the prior was “wasted” on parameter settings that don’t

match the data. A simple model has less to waste, so its Occam factor is larger. Complex models

only win if they fit the data much better, enough to overcome their Occam penalty.

Possible datasets
0.0

0.2

0.4

0.6

0.8

1.0

p
(d

a
ta
|M

)

Simple model
Complex model
Observed data

Figure 10. Bayesian Occam’s razor. A simple model (blue) concentrates its prior probability in a

narrow range of possible datasets, while a complex model (magenta) spreads probability over many more

possibilities. At the observed data (dashed line), the simple model assigns higher probability because it

“expected” this outcome more strongly.

9 Common distributions

A toolkit of distributions you’ll encounter repeatedly. Choosing the right distribution means

asking: what kind of data do I have, and what process generated it?

Gaussian (Normal). x ∼ N (µ, σ2)

p(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
, log p(x) = −1

2
log(2πσ2)− (x− µ)2

2σ2
(9.1)

Use when: measuring continuous quantities with symmetric noise. The central limit theorem says

that sums of many small effects tend toward Gaussian, so it appears everywhere: measurement er-

rors in experiments, height distributions in populations, stock price fluctuations (approximately),

noise in neural recordings.

10

DS 595: AI Methods for Science Spring 2026

Poisson. n ∼ Poisson(λ)

p(n) =
λne−λ

n!
, log p(n) = n log λ− λ− log(n!) (9.2)

Use when: counting events that occur independently at a constant average rate λ. Examples:

photon counts in astronomy, radioactive decays, website visits per hour, mutations per genome,

disease cases per region. Note: for numerical stability with large n, compute log(n!) using the

log-gamma function: log(n!) = log Γ(n + 1), which is available in most scientific libraries (e.g.,

scipy.special.gammaln).

Binomial. k ∼ Binomial(n, p)

p(k) =

(
n

k

)
pk(1− p)n−k, log p(k) = log

(
n

k

)
+ k log p+ (n− k) log(1− p) (9.3)

Use when: counting successes in a fixed number of independent trials. Examples: coin flips,

patients responding to treatment out of n enrolled, defective items in a batch, correct predictions

out of n test cases.

Categorical. y ∼ Cat(π1, . . . , πK)

p(y = k) = πk, log p(y = k) = log πk,
∑

k

πk = 1 (9.4)

Use when: outcome is one of K discrete classes. Examples: image classification (cat/dog/bird),

document topics, particle types, cell types in single-cell data.

Uniform. x ∼ Uniform(a, b)

p(x) =
1

b− a
, log p(x) = − log(b− a) for x ∈ [a, b] (9.5)

Use when: all values in a range are equally plausible. Often used as a “non-informative” prior

when you have no reason to prefer one value over another.

Beta. x ∼ Beta(α, β)

p(x) =
xα−1(1− x)β−1

B(α, β)
, log p(x) = (α− 1) log x+ (β − 1) log(1− x)− logB(α, β) (9.6)

where B(α, β) = Γ(α)Γ(β)/Γ(α + β) is the beta function. Use when: modeling probabilities or

proportions (values in [0, 1]). The conjugate prior for Binomial success probability. α = β = 1

gives Uniform; α, β > 1 gives a unimodal distribution.

Gamma. x ∼ Gamma(α, β)

p(x) =
βα

Γ(α)
xα−1e−βx, log p(x) = α log β − log Γ(α) + (α− 1) log x− βx (9.7)

Use when: modeling positive continuous quantities (rates, variances, waiting times). The conju-

gate prior for Poisson rate λ. The special case α = 1 is the Exponential distribution.

11

DS 595: AI Methods for Science Spring 2026

−4 −2 0 2 4

x

0.0

0.2

0.4

0.6

0.8
p
(x

)
Gaussian

µ = 0, σ = 1
µ = 0, σ = 0.5
µ = 1, σ = 1.5

0 5 10 15

n

0.0

0.1

0.2

p
(n

)

Poisson

λ = 2
λ = 5
λ = 10

0 5 10 15 20

k

0.00

0.05

0.10

0.15

0.20

p
(k

)

Binomial (n = 20)

p = 0.2
p = 0.5
p = 0.8

A B C D

Category

0.0

0.1

0.2

0.3

0.4

0.5

π
k

Categorical

0 1 2 3

x

0.0

0.5

1.0

p
(x

)

Uniform

[0, 1]

[0, 2]

[1, 3]

Figure 11. Common probability distributions. Top row: Gaussian (continuous, symmetric), Poisson

(discrete counts), Binomial (number of successes). Bottom row: Categorical (discrete outcomes), Uniform

(flat over interval).

10 Machine learning through a probabilistic lens

Every ML task is about learning a probability distribution, and we just have to figure out which

one.

10.1 What are you learning?

You’ll often see ML methods categorized as “supervised” vs. “unsupervised.” This is a useful

organizational scheme, but it’s somewhat atheoretical: it describes what labels you have, not

what problem you’re solving. For a science audience, the more natural framing is: What scientific

question am I asking? What does my data look like? What assumptions am I encoding? The

supervised/unsupervised distinction falls out of that, rather than driving it. Still, it’s worth

knowing the standard terminology.

Supervised learning: p(x | t). Given input-output pairs {(ti, xi)}, learn to predict outputs

from inputs.

• Classification: x is discrete. Learn p(x = k | t), the probability of each class given input

t.

• Regression: x is continuous. Learn p(x | t), ideally the full distribution, not just the

mean.

12

DS 595: AI Methods for Science Spring 2026

Unsupervised learning: p(x). Given only inputs {xi}, learn the data distribution itself.

• Density estimation: Model p(x) so you can evaluate the density (relative plausibility) of

any observation. “How typical is this galaxy image under my model?”

• Generation: Sample new x ∼ p(x). If you can generate realistic galaxies, you’ve captured

something about galaxy distributions.

• Anomaly detection: Train on “normal” (representative) data to learn p(x). Given a

new observation x∗, compute its density p(x∗). If the density is very low, the observation

is unlike anything in the training set, so flag it as anomalous. Example: train on known

stellar spectra, detect unusual spectra that might be new phenomena.

Self-supervised learning. Use the structure of the data to create prediction tasks without

external labels. Mask part of the input and predict it from the rest: p(xmasked | xvisible). Or learn

that two augmented views of the same data point should have similar representations (contrastive

learning). Probabilistically, you’re still learning something about p(x), just via a clever proxy

task. This is how large language models and vision foundation models are trained. See Figure 12.

Figure 12. Look Ma, no labels.

Semi-supervised learning. You have a small labeled dataset {(ti, xi)} and a large unlabeled

dataset {xj}. Use the unlabeled data to learn the structure of p(x), which constrains and regu-

larizes the supervised task. Relevant for science where labels (e.g., expensive simulations, expert

annotations) are scarce but raw data is abundant.

Representation learning. Learn a mapping z = f(x) to a lower-dimensional latent space

where useful structure is exposed. Probabilistically, this often means learning a latent variable

model p(x, z) = p(x | z)p(z) and using the inferred z as a representation. The representation

captures what’s “important” about x for downstream tasks. We’ll go into this in detail later in

the course.

13

DS 595: AI Methods for Science Spring 2026

Generative vs. discriminative. This is a separate axis from supervised/unsupervised. Su-

pervised vs. unsupervised asks: do you have labels? Generative vs. discriminative asks: do you

model the data distribution? Discriminative models learn p(θ | x) directly: given data, predict

parameters. Generative models learn p(x | θ), p(x, θ), or just p(x). The difference matters: gen-

erative models can answer “is this observation plausible?” by evaluating p(x). Discriminative

models cannot; they only know how to map data to parameters, not whether the data makes

sense.

10.2 Loss functions are likelihoods

Cross-entropy is the canonical loss for classification; MSE for regression. These aren’t arbitrary

choices. Every loss function encodes a probabilistic assumption, and minimizing the loss =

maximizing a likelihood.

MSE ⇔ Gaussian likelihood. Assume observations scatter around model predictions with

Gaussian noise: x = x̂ + ϵ, where ϵ ∼ N (0, σ2) with fixed variance σ2. The log-likelihood

is log p(x | x̂) = − 1
2σ2 (x − x̂)2 + const. Since σ2 is fixed, minimizing MSE =

∑
i(xi − x̂i)

2

is equivalent to maximizing Gaussian likelihood. (If you want to learn σ2 too, you’d need to

optimize the full log-likelihood including the normalization term.)

Cross-entropy ⇔ categorical likelihood. For classification with K classes, the categorical

likelihood of observing class c is p(x = c | π̂) = π̂c, where π̂k is the model’s predicted probability

for class k. If we encode the true class as a one-hot vector x (with xc = 1 and xk = 0 for k ̸= c),

we can write p(x | π̂) =
∏

k π̂
xk
k . Taking the log:

log p(x | π̂) =
∑

k

xk log π̂k (10.1)

The cross-entropy loss is the negative of this: LCE = −
∑

k xk log π̂k. Minimizing cross-entropy

is equivalent to maximizing the categorical log-likelihood.

Binary cross-entropy (BCE). For binary classification (K = 2), let y ∈ {0, 1} be the true

label and p̂ the model’s predicted probability of class 1. The BCE loss is:

LBCE = −y log p̂− (1− y) log(1− p̂) (10.2)

This is the negative log-likelihood of a Bernoulli distribution with parameter p̂, and is a special

case of cross-entropy with K = 2.

10.3 What’s next: computing posteriors

We now know what we want: the posterior p(θ | x). But computing it requires evaluating integrals

like p(x) =
∫
p(x | θ)p(θ) dθ, which are intractable in high dimensions. The next chapter covers

how to approximate these integrals:

• MCMC (Markov chain Monte Carlo): Generate samples from the posterior by constructing

a random walk that preferentially explores high-probability regions.

14

DS 595: AI Methods for Science Spring 2026

• Variational inference: Approximate the posterior with a simpler distribution by turning

inference into optimization.

Later, we’ll also see simulation-based inference, which learns to do inference directly from

simulated data, useful when the likelihood p(x | θ) is hard to write down but easy to simulate.

15

	Why be probabilistic?
	Notation and probability basics
	Forward vs. inverse problems
	The data-generating process: a worked example
	The likelihood function
	Maximum likelihood estimation
	The posterior distribution
	Bayesian model comparison
	Common distributions
	Machine learning through a probabilistic lens
	What are you learning?
	Loss functions are likelihoods
	What's next: computing posteriors

