¢ - Probabilistic Reasoning

1 Why be probabilistic?

For years, machine learning notched wins in vision, speech, and games, while science remained
largely on the sidelines. When deep learning methods finally entered scientific workflows in the
late 2010s, it was probabilistic approaches that made them stick: methods that could quantify
uncertainty, incorporate prior knowledge, and do more than just predict and classify. We often
want to understand why patterns exist, quantify how certain we are, and reason about what we
don’t know.

Probabilistic reasoning provides this foundation. It’s the language for quantifying uncertainty
in measurements and conclusions, updating beliefs as we gather evidence, comparing competing
explanations for observed phenomena, and making decisions under incomplete information. Every
scientific conclusion rests on incomplete information. We observe a finite number of noisy mea-
surements and try to infer something about the underlying process. Probability theory provides
a consistent framework for this.

2 Notation and probability basics

We'll use consistent notation throughout:

e 1: observed data
e 0: parameters of interest, the quantities we want to learn

e z: latent variables, unobserved quantities in the model

The notation = ~ p(x) means “x is a random variable distributed according to p,” or equiva-
lently, “z is drawn from p.” For example, x ~ N (u1, 0?) means z is drawn from a Gaussian with

mean g and variance o2.

Density vs. probability. For continuous variables, p(x) is a probability density, not a proba-
bility. The probability of x taking any exact value is zero; instead, p(z) dx gives the probability
of z falling in a tiny interval [z,z + dx]. Densities can exceed 1 (a narrow Gaussian has high
density at its peak). To get actual probabilities, integrate: P(a < z < b) = fabp(x) dx. We'll use
p(+) for both densities and probability mass functions; context makes it clear which.

Conditional probability. The probability of A given that we know B is:

_ p(A,B)
p(A|B) = “o(B) (2.1)

The intuition: conditioning on B restricts our universe to only those outcomes where B occurred.
Within that restricted universe, p(A | B) is the fraction where A also holds: the overlap p(A, B)
divided by the new total p(B). This is how we update beliefs with new information.

DS 595: AI Methods for Science Spring 2026

Independence. Events A and B are independent if p(A, B) = p(A)p(B). Knowing B tells us
nothing about A. For independent observations: p(z1,z2,...,2n | 0) = [[, p(x; |).

Marginalization. If we don’t care about some variable, integrate it out:

p(z) = /p(x,z) dz (2.2)

This is how we handle nuisance parameters: integrate over them, properly propagating their
uncertainty.

p(@) = [p@.y)dy

(y) = [p(z,y) cllar

p(y)
Figure 1. Marginalization visualized. The central contours show a joint distribution p(x,y). The marginal

p(z) (top) is obtained by integrating out y; the marginal p(y) (right) by integrating out z.

Expectation values. The expectation of a function f(z) under distribution p(z) is:

By [f(2)] = / f(2) plz) dz (2.3)

This is the average value of f, weighted by how probable each x is. Common examples: the
mean is E[x], the variance is E[(z — E[z])?]. The subscript on E clarifies which distribution we’re
averaging over.

Product rule. Joint probabilities factor:

p(z,2) = p(z | 2)p(2) = p(z | 2)p(z) (2.4)

Bayes’ theorem. The product rule’s symmetry gives us:

_ p(z]0)p(0)
p((9 ‘ IE) - p(x)

(2.5)

DS 595: AI Methods for Science Spring 2026

3 Forward vs. inverse problems
This distinction is fundamental to scientific inference:

e Forward problem: Given parameters 6, sample data x ~ p(z |). This is what a
simulator does: plug in masses and spins, add noise, and out comes a realization of what
you might observe. The forward model is stochastic: the same parameters can produce
different data due to noise, latent variables, or intrinsic randomness.

e Inverse problem: Given data z, infer parameters . This is what scientific inference is
all about. Inverse problems are hard, since they’re ill-posed, with many parameter values
consistent with the data.

The forward problem is “easy” in the sense that we can sample from p(x |) by running the
simulator and drawing noise. The inverse problem is hard because we need to invert this: given
one sample, characterize all the parameters (or distribution of parameters rather) that could have
produced it.

Forward (Simulation)

x ~p(x|0)

Sample from the model

Parametersw > Data
0 T
masses, spins, <€ measurements,
coefficients k

observations

Inverse (Inference)
p(0 |)

lll-posed, many-to-one

Figure 2. Forward vs. inverse problems. The forward direction (simulation) samples data given param-
eters: x ~ p(z |). The inverse direction (inference) is ill-posed: given data, we want a distribution over
parameters p(6 | «). Bayesian inference provides a principled framework for this inversion.

The key insight: first specify the forward model, then invert it. Write down how
data arise from parameters, then use Bayesian inference to go backwards from observed data to
parameter estimates.

4 The data-generating process: a worked example

Let’s make this concrete with a simple example: fitting a line to noisy data.

Setting. We measure N data points {x;} at known inputs {¢;}. We believe the true relationship
is linear: & = mt + ¢, but our measurements have noise. (Note: we write x = mt 4 ¢ rather than
the conventional y = max + ¢ to stay consistent with our notation where 2 denotes observed data.)

DS 595: AI Methods for Science Spring 2026

The forward model. We write down a story for how the data came to be:

1. There are some true parameters § = (m,c) (the slope and intercept) characterizing our
model

2. For each input ¢;, the “true” value is p; = mt; 4+ ¢
3. We observe x; = u; + €¢; where ¢; ~ N(0, 02) is measurement noise

In probabilistic notation:
z; ~ N(mt; + ¢, 0?) (4.1)

This says: “z; is drawn from a Gaussian distribution centered at the line, with variance o2.”

T T T
True

14— Max. likelihood g

® Data

1T

Figure 3. Fitting a line to noisy data. Each measurement has Gaussian uncertainty o (shown as error
bars). The gray dashed line is the true relationship; the orange line is the maximum likelihood estimate.

5 The likelihood function

The likelihood p(z | 0) answers: “If the parameters were 6, how probable is the observed data?”.
The likelihood encodes the forward model: given parameters, predict the data distribution. For
our line-fitting example:

(5.1)

(i — (mt; + C))2>

_ 1
p(xl ‘ m,c, tia U) - % exXp | — 20_2

For independent observations, the joint likelihood is the product:

N
p({zi} | m,c,{t;}, o) = Hp(a:z | m,c,t;,0) (5.2)
i=1

Remark 5.1. The likelihood is a function of 6 (for fixed data), not a probability distribution
over §. We write £() = p(x | 0) to emphasize this. The likelihood tells us how well each 6
“explains” the data.

DS 595: AI Methods for Science Spring 2026

6 Maximum likelihood estimation

Before going full Bayesian, consider a simpler approach: find the parameters that make the data
most probable.

The MLE. The maximum likelihood estimate is:
OniLe = arg m@axp(m | §) = arg max L(0) (6.1)
Log-likelihoods. In practice, we work with log-likelihoods:
£(0) = logp(z | 0) (6.2)

Products become sums, which are easier numerically, and we avoid underflow when multiplying
many small probabilities.
For our line example with Gaussian noise:

N 1
lm,c) = —— log(27m ~ 552 Z —mt; — c¢)? (6.3)

The first term is constant in (m, ¢). Maximizing ¢ is equivalent to minimizing >, (z; — mt; — c)?,
which is ordinary least squares.

Profile likelihoods. When there are nuisance parameters, we can “profile” them out. For each
value of the parameter of interest, maximize over nuisance parameters:

Eproﬁle(e) = qu?X [’(97 ¢) (64)
0 - -
= 1
S
|
—~ —2}]
£
S
—3}]
Max. likelihood
True
415 2.0 2.5 3.0 3.5

Slope m

Figure 4. Profile likelihood for the slope parameter m, with the intercept ¢ profiled out. The curve shows
how well each value of m can fit the data (after optimizing over ¢). The peak marks the MLE of m.

Likelihood ratios. Compare two hypotheses by their likelihood ratio:

p(z | 61)
p(z | 0o)
This asks: how much more probable is the data under 6; than 6y7. Profile likelihoods let us focus

A= (6.5)

on parameters of interest; likelihood ratios let us compare specific hypotheses.

DS 595: AI Methods for Science Spring 2026

Quantifying uncertainty. The MLE gives a point estimate, but how certain are we? There
are several frequentist approaches (confidence intervals, bootstrap, Fisher information), but we
will focus on the Bayesian approach: compute the full posterior distribution.

7 The posterior distribution

Bayes’ theorem tells us how to update beliefs:

likelihood prior

(z | 0) -p(6)
p\r P
pl|z) = =———~—— (7.1)
SN—— p(l‘)
posterior ~~
evidence
e p(0) is the prior: what we believed before seeing data
e p(x | 0) is the likelihood: how probable the data is given 6
e p(0 | x) is the posterior: what we believe after seeing data
e p(x) is the evidence: a normalizing constant (more on this later)
(a) Prior p(0) (b) Likelihood p(z |) (c) Posterior p(6 | x)
Lof { rof .
0.8F 4 os}t g
0.6F { o6} 1
0.4 i o4f .
0.2f 4 02t .
00— 2 7 ¢ 0% 2 7 6
0 0

Figure 5. Bayesian inference: the prior (left) encodes initial beliefs, the likelihood (middle) peaks where
data are probable, the posterior (right) combines both.

Unlike MLE which gives a point, the posterior is a distribution. It tells us everything the data
says about the parameters, given our model and prior.

Sequential updating. Suppose we observe data one point at a time. After seeing x1, we have
posterior p(f | z1). When 9 arrives, yesterday’s posterior becomes today’s prior:

p(0 |z, 22) < p(z2 | 0) - p(0]21) (7.2)
.
previous posterior

Each new observation updates our beliefs. The posterior accumulates evidence: p(0 | z1,...,xN)
encodes everything we’ve learned from all N observations.

DS 595: AI Methods for Science Spring 2026

p(0) p(0 | z1) p(0 | z1:5) p(0 | T1:20)
T T e T T T T T T T T T
=== Posterior
<==* True
£
72}
=1
&)
A
1 i 1 i 1 L i L i L
0 2 4 0 2 4 0 2 4 0 2 4
0 0 0 0

Figure 6. Sequential Bayesian updating. Starting from the prior p(), each observation sharpens the
posterior: p(6) — p(0 | 1) — p(0 | x1,22) — ---. The orange dashed line marks the true value.

Priors encode domain knowledge. Priors are sometimes criticized as “subjective.” But all
analysis has assumptions, and Bayesian inference makes them explicit. Priors encode physical
constraints (masses must be positive), previous measurements, and reasonable ranges. This is a
feature, not a bug. In well-identified problems with sufficient data, the prior’s influence fades as
the likelihood dominates.

Worked example. For line fitting with a flat prior on (m,c):

N

p(m,c|{z;}, {t;}) x exp 72fi2 (z; — mt; — c)? (7.3)
i=1

This is a 2D Gaussian! The posterior mean equals the MLE, but we also get the full covariance,

including uncertainty in both parameters and their correlation.

(a) Data + posterior samples (b) Joint posterior
T

T T T T T 3.0 T T T T T T
Samples from p(6 |) * True
14 == True] - b
2.5
§ Data 7%
12F -’ E
{ i -, { 2.0F R
= -
1.5F 4

1.

et]
e |7
W | |

1 1 1 1 1 1 _1 1 1 1 1 1 1 1
0 1 2 3 4 5 '9.50 1.75 2.00 225 250 275 3.00 325 3.50

Intercept ¢

Figure 7. Bayesian inference for line fitting. (a) Data with measurement uncertainties; teal lines show
the range of fits consistent with the data, each a line x = mt + ¢ for a different (m,¢) pair drawn from
the posterior. (b) Joint posterior over slope m and intercept ¢, showing the characteristic anti-correlation:

steeper slopes require lower intercepts.

DS 595: AI Methods for Science Spring 2026

Using the posterior. The posterior p(f | x) is the complete answer, but we often need sum-
maries:

e Point estimates: The posterior mean E[f | z] or the mode (MAP estimate). Report one
number when needed, but remember you're discarding distributional information.

e Credible intervals: A 68% credible interval [a,b] satisfies ff p(@ |)dd = 0.68. The
central interval cuts off equal probability (16%) from each tail. The highest density interval
(HDI) is the narrowest interval containing that probability—better for skewed distributions
where the central interval can exclude the peak.

e Marginals: To report uncertainty on one parameter, integrate out the others: p(6; | x) =
[p(61,62 | x) df2. The marginal propagates uncertainty including the effect of not knowing
5.

Of course, if possible just show the full posterior!

Parameter degeneracy. In Figure 7b, the posterior shows a strong anti-correlation between
slope m and intercept c: if the slope is steeper, the intercept must be lower to fit the data. This
is parameter degeneracy: different parameter combinations give similar predictions. The joint
posterior captures this; looking at parameters individually would miss it.

8 Bayesian model comparison

We’ve been fitting a line to our data. But how do we know a line is the right model? Maybe the
relationship is actually cubic: y = a + bx + cx? + dz3. The cubic model can fit more patterns,
but is that extra flexibility warranted?

The evidence. The marginal likelihood (or “evidence”) answers this:
p(data | M) = /p(data | 6, M) p(0| M)do (8.1)

This is the probability of the data averaged over all parameter values, weighted by the prior. It
rewards models that predict the data well without needing to tune parameters precisely.

Bayes factors. To compare models, compute the ratio of evidences:

p(data | M)

BF,, = 2\C2 121
27 pldata | M)

(8.2)

A Bayes factor of 10 means the data are 10 times more probable under model 1.

Example: linear vs. cubic. Both models can fit our data reasonably well (Figure 9). The
cubic model fits slightly better since it has more parameters to tune. But Bayes factors favor the
linear model, because the cubic model’s extra flexibility is wasted: it spreads its prior probability
over many curves that don’t match the data.

DS 595: AI Methods for Science Spring 2026

p(m | data)
I

1.0F - g

0.8F 1

68
0.6 T 95

-‘* True value

Density

0.2 E

p(c | data)

3.0 T T T T
2.5F 1
2.0 1
1.5F 1

1.0f 1

Intercept ¢

0.5F 1

0.0F 1

—0.5F m

_ 1 1 1 1 1 1
1'q.5 2.0 2.5 3.0 35 000 025 050 0.75 1.00
Slope m Density

Figure 8. Corner plot for the line-fitting posterior. Diagonal: marginal distributions p(m | data) and
p(c | data) with 68% credible intervals (shaded). Off-diagonal: joint posterior with 68% and 95% credible
regions (contours containing 68% and 95% of the probability mass).

(b) Log evidence

(a) Model fits

T
True
14— Linear fit —36
= = Cubic fit
121 i Data 7
. —371
10 R 2
8 1 = -38f
> =
<
6 1 =
%0 -39
4 4 =
BF =e® ~ 10
2 B —40F i
O .
1 1
0 1 2 3 4 5 Linear Cubic

Figure 9. Model comparison for line-fitting data. (a) Linear (y = a+bx) and cubic (y = a+bx+cx®+dx®)
fits to the same data; both fit reasonably well. (b) Log evidence logp(data | M) for each model. The
difference A = 2.3 corresponds to a Bayes factor of ~ 10 favoring the simpler linear model.

DS 595: AI Methods for Science Spring 2026

Automatic Occam’s razor. Why does integrating over parameters penalize complexity? Fig-
ure 10 illustrates the geometric intuition. The evidence can be approximated as:

posterior volume

(8.3)

p(data | M) ~ p(data | 6, M) x

prior volume

Vv
Occam factor

A complex model with many parameters has a large prior volume, since it can fit many possible
datasets. But after seeing data, the posterior concentrates in a small region. The ratio (posterior
volume / prior volume) is tiny: most of the prior was “wasted” on parameter settings that don’t
match the data. A simple model has less to waste, so its Occam factor is larger. Complex models
only win if they fit the data much better, enough to overcome their Occam penalty.

1.0
Simple model
Complex model
== Observed data
0.8 b

0.4

p(data | M)

0.2

1
Possible datasets

0.0

Figure 10. Bayesian Occam’s razor. A simple model (blue) concentrates its prior probability in a
narrow range of possible datasets, while a complex model (magenta) spreads probability over many more
possibilities. At the observed data (dashed line), the simple model assigns higher probability because it
“expected” this outcome more strongly.

9 Common distributions

A toolkit of distributions you’ll encounter repeatedly. Choosing the right distribution means
asking: what kind of data do I have, and what process generated it?

Gaussian (Normal). z ~ N (u,0?)

r—)2 I —)2
p(z) = \/21r7€Xp <—(202H)) , logp(z) = —% log(2mo?) — (202#) (9.1)

Use when: measuring continuous quantities with symmetric noise. The central limit theorem says
that sums of many small effects tend toward Gaussian, so it appears everywhere: measurement er-
rors in experiments, height distributions in populations, stock price fluctuations (approximately),

noise in neural recordings.

10

DS 595: AI Methods for Science Spring 2026

Poisson. n ~ Poisson(\)

n,—\
pn) = 2 sv . logp(n) = nlog A — A — log(n!) (9.2)

Use when: counting events that occur independently at a constant average rate A\. Examples:
photon counts in astronomy, radioactive decays, website visits per hour, mutations per genome,
disease cases per region. Note: for numerical stability with large n, compute log(n!) using the
log-gamma function: log(n!) = logT'(n + 1), which is available in most scientific libraries (e.g.,
scipy.special.gammaln).

Binomial. % ~ Binomial(n, p)

p(k) = <n>pk(1 —p)"*, logp(k) = log (Z) +klogp+ (n—k)log(1—p) (9.3)

Use when: counting successes in a fixed number of independent trials. Examples: coin flips,
patients responding to treatment out of n enrolled, defective items in a batch, correct predictions
out of n test cases.

Categorical. y ~ Cat(m,...,7K)

ply="k) =mp, logply=k) =logm, Y m=1 (9.4)
k

Use when: outcome is one of K discrete classes. Examples: image classification (cat/dog/bird),
document topics, particle types, cell types in single-cell data.

Uniform. 2z ~ Uniform(a,b)
p(z) = ——, logp(x) = —log(b—a) forz € [a,b] (9.5)
—a
Use when: all values in a range are equally plausible. Often used as a “non-informative” prior
when you have no reason to prefer one value over another.
Beta. 1z ~ Beta(a,)

xo‘_l(l — x)ﬁ_l

B(a, B) ’
where B(a,) = T'(a)I'(8)/T'(a + B) is the beta function. Use when: modeling probabilities or
proportions (values in [0, 1]). The conjugate prior for Binomial success probability. a = 8 =1

p(z) = logp(z) = (o —1)logz + (6 — 1) log(1l — x) — log B(a, B) (9.6)

gives Uniform; «, 8 > 1 gives a unimodal distribution.

Gamma. 1z ~ Gamma(a,)

p(z) = Fﬁ(;mo‘_le_ﬁx, logp(z) = alogp —logI'(a) + (v — 1) logx — Sz (9.7)

Use when: modeling positive continuous quantities (rates, variances, waiting times). The conju-
gate prior for Poisson rate A. The special case a = 1 is the Exponential distribution.

11

DS 595: AI Methods for Science

Spring 2026

Gaussian Poisson Binomial (n = 20)
T T T T T
=2 = 0.2 i
N5 0.20 =05
=10 | B p=0.8
0.15 1
=
2 0.10 b
0.05 | b
l [l 1] I | i
0.00 0 20
x
Categorical Uniform
05 T T T T T T
=[0,1]
==1[0,2]
0.4 1.0 — (1, 3]
. 0.3 =
& =
02 05 .
0.1
0077 A B C D 0-07% 1 2 3
Category T

Figure 11. Common probability distributions. Top row: Gaussian (continuous, symmetric), Poisson
(discrete counts), Binomial (number of successes). Bottom row: Categorical (discrete outcomes), Uniform
(flat over interval).

10 Machine learning through a probabilistic lens

Every ML task is about learning a probability distribution, and we just have to figure out which
one.

10.1 What are you learning?

You'll often see ML methods categorized as “supervised” vs. “unsupervised.” This is a useful

organizational scheme, but it’s somewhat atheoretical: it describes what labels you have, not
what problem you’re solving. For a science audience, the more natural framing is: What scientific
question am I asking? What does my data look like? What assumptions am I encoding? The
supervised /unsupervised distinction falls out of that, rather than driving it. Still, it’s worth

knowing the standard terminology.

Supervised learning: p(z | t). Given input-output pairs {(¢;,z;)}, learn to predict outputs

from inputs.

e Classification: z is discrete. Learn p(x = k | t), the probability of each class given input
t.

e Regression: z is continuous. Learn p(z | t), ideally the full distribution, not just the

mearn.

12

DS 595: Al Methods for Science Spring 2026

Unsupervised learning: p(z). Given only inputs {z;}, learn the data distribution itself.

e Density estimation: Model p(x) so you can evaluate the density (relative plausibility) of
any observation. “How typical is this galaxy image under my model?”

e Generation: Sample new = ~ p(z). If you can generate realistic galaxies, you've captured
something about galaxy distributions.

e Anomaly detection: Train on “normal” (representative) data to learn p(x). Given a
new observation z*, compute its density p(x*). If the density is very low, the observation
is unlike anything in the training set, so flag it as anomalous. Example: train on known
stellar spectra, detect unusual spectra that might be new phenomena.

Self-supervised learning. Use the structure of the data to create prediction tasks without
external labels. Mask part of the input and predict it from the rest: p(Zmasked | Zvisible). Or learn
that two augmented views of the same data point should have similar representations (contrastive
learning). Probabilistically, you're still learning something about p(z), just via a clever proxy
task. This is how large language models and vision foundation models are trained. See Figure 12.

Self-supervised
Learning

Figure 12. Look Ma, no labels.

Semi-supervised learning. You have a small labeled dataset {(¢;,x;)} and a large unlabeled
dataset {x;}. Use the unlabeled data to learn the structure of p(z), which constrains and regu-
larizes the supervised task. Relevant for science where labels (e.g., expensive simulations, expert
annotations) are scarce but raw data is abundant.

Representation learning. Learn a mapping z = f(z) to a lower-dimensional latent space
where useful structure is exposed. Probabilistically, this often means learning a latent variable
model p(x,z) = p(z | 2)p(z) and using the inferred z as a representation. The representation
captures what’s “important” about x for downstream tasks. We’ll go into this in detail later in
the course.

13

DS 595: AI Methods for Science Spring 2026

Generative vs. discriminative. This is a separate axis from supervised /unsupervised. Su-
pervised vs. unsupervised asks: do you have labels? Generative vs. discriminative asks: do you
model the data distribution? Discriminative models learn p(f |) directly: given data, predict
parameters. Generative models learn p(z | 0), p(z,), or just p(z). The difference matters: gen-
erative models can answer “is this observation plausible?” by evaluating p(z). Discriminative
models cannot; they only know how to map data to parameters, not whether the data makes
sense.

10.2 Loss functions are likelihoods

Cross-entropy is the canonical loss for classification; MSE for regression. These aren’t arbitrary
choices. Every loss function encodes a probabilistic assumption, and minimizing the loss =
maximizing a likelihood.

MSE < Gaussian likelihood. Assume observations scatter around model predictions with
Gaussian noise: = = & + ¢, where ¢ ~ N/(0,0?) with fized variance o?. The log-likelihood
is logp(z |) = —555(z — &)% + const. Since o? is fixed, minimizing MSE = Y, (z; — &;)?
is equivalent to maximizing Gaussian likelihood. (If you want to learn o2 too, you’d need to

optimize the full log-likelihood including the normalization term.)

Cross-entropy < categorical likelihood. For classification with K classes, the categorical
likelihood of observing class ¢ is p(x = ¢ | T) = 7te, where 7, is the model’s predicted probability

for class k. If we encode the true class as a one-hot vector = (with z. = 1 and z3 = 0 for k # ¢),
ATk

we can write p(x |) =[], 7.*. Taking the log:

logp(x | 7) = Z:}:k log 7y, (10.1)
k

The cross-entropy loss is the negative of this: Lcgy = —),y log 7. Minimizing cross-entropy
is equivalent to maximizing the categorical log-likelihood.

Binary cross-entropy (BCE). For binary classification (K = 2), let y € {0,1} be the true
label and p the model’s predicted probability of class 1. The BCE loss is:

Lpce = —ylogp — (1 —y)log(l - p) (10.2)

This is the negative log-likelihood of a Bernoulli distribution with parameter p, and is a special
case of cross-entropy with K = 2.
10.3 What’s next: computing posteriors

We now know what we want: the posterior p(6 |). But computing it requires evaluating integrals
like p(z) = [p(x | 8)p(0) df, which are intractable in high dimensions. The next chapter covers
how to approximate these integrals:

e MCMC (Markov chain Monte Carlo): Generate samples from the posterior by constructing
a random walk that preferentially explores high-probability regions.

14

DS 595: AI Methods for Science Spring 2026

e Variational inference: Approximate the posterior with a simpler distribution by turning
inference into optimization.

Later, we’ll also see simulation-based inference, which learns to do inference directly from
simulated data, useful when the likelihood p(x | €) is hard to write down but easy to simulate.

15

	Why be probabilistic?
	Notation and probability basics
	Forward vs. inverse problems
	The data-generating process: a worked example
	The likelihood function
	Maximum likelihood estimation
	The posterior distribution
	Bayesian model comparison
	Common distributions
	Machine learning through a probabilistic lens
	What are you learning?
	Loss functions are likelihoods
	What's next: computing posteriors

