
· MCMC and Variational Inference

1 You have the posterior. Now what?

The previous chapter introduced Bayes’ theorem:

p(θ | x) = p(x | θ) p(θ)
p(x)

(1.1)

The posterior p(θ | x) is the answer to inference. But the posterior is a distribution, not a number.

For two parameters, it’s a surface. For fifteen parameters, it’s a 15-dimensional landscape.

Summaries are integrals. We rarely need the full distribution. We want summaries: the

posterior mean E[θ | x], credible intervals. Each of these is an integral (Figure 1):

E[θ | x] =
∫

θ p(θ | x) dθ (1.2)

Pr(θ ∈ [a, b] | x) =
∫ b

a
p(θ | x) dθ (1.3)

−2 −1 0 1 2

θ1

−1

0

1

2

3

4
θ 2

Figure 1. A two-dimensional posterior distribution. The blue shading shows probability density; darker

regions are more probable. The red star marks the posterior mean E[θ | x]. The green contour encloses a

95% credible region Pr(θ ∈ R | x) = 0.95.

The problem is that we can’t do these integrals. For simple models (like the Gaussian

example in Chapter 1), these integrals have closed-form solutions. But for almost any interesting

model, they don’t. We can evaluate the posterior at any point, but we cannot integrate it

analytically.

Two strategies (Figure 2).

1. MCMC (Markov chain Monte Carlo): Generate samples from the posterior and re-

place integrals with averages: E[θ | x] ≈ 1
N

∑
i θi. Exact in the limit of infinite samples,

but can be slow.
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2. Variational inference: Approximate the posterior with a simpler distribution q(θ) ≈
p(θ | x) that we can integrate. Fast, but only approximate.
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VI: approximate qφ(θ) ≈ p(θ | x)
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qφ = N (µ, diag(σ2))

Figure 2. Two approaches to intractable posteriors. The blue shading shows a curved “banana” posterior

p(θ | x). (Left) MCMC generates samples distributed according to the true posterior, capturing its full

structure including correlations. (Right) Variational inference approximates the posterior with a simpler

distribution—here a mean-field Gaussian qϕ(θ) = N (µ, diag(σ2)). The approximation finds the right

location but cannot represent the curvature.

2 Monte Carlo integration

If we had samples from the posterior, we could replace integrals with averages. Suppose we obtain

θ1, θ2, . . . , θN ∼ p(θ | x). Then:

E[f(θ) | x] =
∫

f(θ) p(θ | x) dθ ≈ 1

N

N∑
i=1

f(θi) (2.1)

The posterior mean is θ̄ = 1
N

∑
i θi. The variance is the sample variance. A 95% credible interval

comes from sorting the samples and taking the 2.5th and 97.5th percentiles. Sampling is just

integration/averaging.

Convergence. By the law of large numbers, the sample average converges to the true expec-

tation E[f(θ)] as N → ∞. The standard error scales as σ/
√
N , where σ2 = Var[f(θ)]. Halving

the error requires four times as many samples.

Dimension-free convergence. The error σ/
√
N depends on N and σ, but not on the dimen-

sion of θ. Compare this to grid integration: with 10 points per dimension, a 15D integral needs

1015 evaluations. Grid methods scale exponentially with dimension. Monte Carlo does not. The

catch is that the dimension affects how hard it is to get the samples. But once we have them,

the averaging is dimension-free.
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The main question is the following—how do we sample from a distribution we can only evaluate

up to a normalizing constant? We can compute p(x | θ)p(θ) for any θ, but we don’t know p(x),

so we can’t normalize.

3 The Metropolis algorithm

Imagine exploring a landscape where elevation represents probability—higher means more prob-

able (Figure 4). You want to collect samples that represent this landscape (spending more time

in high-probability regions), but you can only check elevation where you’re standing.

Historical note: Arianna Rosenbluth.— The algorithm first appeared in a 1953 paper by Metropo-

lis, the Rosenbluths, and the Tellers. Marshall Rosenbluth later acknowledged that “Arianna

did all the coding”—programming in raw machine language on the MANIAC I computer at

Los Alamos. She had earned her PhD in physics from Harvard at 21 (only the fifth woman to

do so), after Felix Bloch told her “flat out, without malice, but just as a fact” that he wouldn’t

take female PhD students. She was also a champion fencer who won both women’s and men’s

titles. After Los Alamos, she left physics to raise her children, and when a physicist called

in 2003 to ask about the algorithm’s development, she was surprised anyone remembered it:

“Oh, that thing.” More than 50,000 papers have since cited the work. She died in 2020, of

COVID-19, at 93.
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Figure 3. The Metropolis algorithm in action. Starting from a uniform prior p(θ) (left), the algorithm

builds a Markov chain (center) by proposing moves and accepting or rejecting them based on the posterior

ratio. Accepted proposals (blue lines) move the chain to a new state; rejected proposals (red dashed) leave

it in place. After many iterations, the histogram of visited states (orange bars, right) approximates the

true posterior p(θ | x) (blue curve).

The Metropolis algorithm (Figure 3) is a random walk with a clever acceptance rule:

1. Propose: From current position θ, propose a move to θ′ ∼ N (θ, σ2I)—a Gaussian centered

at the current position.
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Figure 4. MCMC as landscape exploration. The surface represents a posterior distribution over two

parameters. The algorithm proposes moves (arrows), accepts those that go uphill or pass a random test

when going downhill, and traces out a path that spends more time in high-probability regions.

2. Accept or reject: Compute the acceptance probability:

α = min

(
1,

p(θ′ | x)
p(θ | x)

)
(3.1)

If the new spot has higher probability: always accept. If lower: accept with probability α.

3. Record: If accepted, move to θ′; otherwise stay at θ. Record the current position as a

sample.

Accepting “downhill” moves with probability proportional to the density ratio prevents getting

stuck on one peak while still spending more time in high-probability regions.

3.1 Why does this work?

Why this particular acceptance rule? The short answer: accepting with probability α = min(1, p(θ′)/p(θ))
ensures the chain spends time in each region proportional to its probability.
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Normalizing constants cancel. The acceptance ratio only involves p(θ′ | x)/p(θ | x). Since

both share the same normalizing constant p(x), it cancels:

p(θ′ | x)
p(θ | x) =

p(x | θ′) p(θ′)
p(x | θ) p(θ) (3.2)

We only need the unnormalized posterior—likelihood times prior.

Detailed balance. The formal justification is detailed balance: in equilibrium, the flow of

probability between any two states must balance (Figure 5). For states θA and θB:

p(θA)T (θA → θB) = p(θB)T (θB → θA) (3.3)

where T is the transition probability (propose times accept). The Metropolis acceptance ratio

makes this hold. Suppose p(θ′) ≥ p(θ). We always accept θ → θ′, but only accept θ′ → θ with

probability p(θ)/p(θ′). The flows balance:

p(θ) · 1 = p(θ′) · p(θ)
p(θ′)

= p(θ) ✓ (3.4)

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

θ

p(
θ
|x

)
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B

high prob low prob

A→ B: often proposed

rarely accepted

B → A: rarely proposed
always accepted

Figure 5. Detailed balance visualized. In equilibrium, the probability flow from state A to state B exactly

balances the flow from B to A. State A has higher probability (darker), so transitions A → B are always

accepted, but B → A is only accepted with probability p(A)/p(B). The flows balance: p(A) ·T (A → B) =

p(B) · T (B → A). This ensures the chain spends time at each θ proportional to p(θ | x).

4 Tuning and convergence

Efficient MCMC often involves a degree of hyperparameter tuning. The proposal distribution

has a free parameter—step size σ—and getting it right is critical (Figure 6).
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Figure 6. The step size tradeoff. (a) Step size too small: nearly all proposals are accepted, but exploration

is slow. (b) Step size too large: most proposals land in low-probability regions and are rejected. (c) Step

size well-tuned: efficient exploration.

• Too small: Nearly all proposals are accepted, but exploration is slow.

• Too large: Most proposals land in low-probability regions and are rejected.

A good acceptance rate is roughly 25% in high dimensions. This is just a heuristic. The

intuition: at this rate, the product (acceptance rate) × (step size) is maximized.

Autocorrelation. MCMC samples are correlated—each is near the previous. We want to

minimize this, since we ideally want a bunch of independent samples which represent our posterior.

The autocorrelation time τ measures how many steps until samples become approximately

independent. If τ = 100, then every 100th sample is effectively independent; the effective sample

size is Neff = N/τ is a proxy for the number of “independent” samples.

5 The failure of random walks in high dimensions

The random walk Metropolis algorithm scales poorly with dimension. The autocorrelation time

grows as τ ∝ d—in d dimensions, you need d times more samples to get the same number of

“independent” samples per dimension.

In high dimensions, probability concentrates in a thin shell called the typical set (Figure 7).

For a d-dimensional Gaussian, this shell lies at radius r ∼
√
d from the mode, with thickness

scaling as 1/
√
d.

A random walker on this shell faces a geometric problem. To explore the posterior, we need to

traverse the shell—move along its surface. But a random walk proposes moves in all directions

equally. Most directions point off the shell into low-probability regions.

To stay on the thin shell, we need small step sizes: σ ∝ 1/
√
d. But then the tangential

component—the part that actually explores—also shrinks. The chain makes tiny steps, and

autocorrelation time grows as τ ∝ d.

6



DS 595: AI Methods for Science Spring 2026

0 2 4

Distance from origin ‖θ‖
0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b
a
b

il
it

y
d

en
si

ty

d = 2

Mode:
√

1

0 2 4 6

Distance from origin ‖θ‖
0.0

0.1

0.2

0.3

0.4

0.5

d = 10

0.0 2.5 5.0 7.5 10.0

Distance from origin ‖θ‖
0.0

0.1

0.2

0.3

0.4

0.5

d = 50

Figure 7. The typical set in high dimensions. For a d-dimensional Gaussian, most probability mass lies

not at the mode (where density is highest) but in a thin shell at radius
√
d. Volume grows rapidly with

radius, overwhelming the density decay.

6 Hamiltonian Monte Carlo

The posterior has structure—the gradient ∇ log p(θ | x) tells us which way is “uphill” (Figure 8).

The Metropolis random walk ignores this information. Hamiltonian Monte Carlo (HMC) uses

the gradient to make informed, directed moves.
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Figure 8. Why gradients help. (Left) A random walk proposes moves uniformly in all directions. Most

directions point off the high-probability region and will be rejected. (Right) The gradient ∇ log p(θ) points

toward higher probability; directions perpendicular to the gradient are tangent to contours—exactly where

we want to move to explore efficiently.

6.1 The key idea

The random walk’s problem is that it doesn’t know which directions stay on the typical set

versus which directions point off into low-probability regions. The gradient tells us: ∇ log p(θ)

points toward higher probability (radially inward), so directions perpendicular to the gradient

are tangent to level sets—exactly where we want to move.
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But we can’t just move perpendicular to the gradient, because that direction changes as we

move. We need to follow the contours of the distribution as they curve. Physics gives us this:

Hamiltonian dynamics.

6.2 The physics picture

Imagine a ball rolling on a surface where height is negative log-probability (valleys are high-

probability regions). Give the ball a push, and it rolls: speeding up downhill, slowing uphill,

curving along the contours. A ball rolling without friction conserves energy—it stays on a single

energy level, never drifting into low-probability regions. Hamiltonian dynamics naturally

traverses level sets of probability!

Augment parameters θ with momentum ρ. The Hamiltonian (total energy) is:

H(θ, ρ) = − log p(θ | x)︸ ︷︷ ︸
potential energy

+
1

2
ρ⊤ρ︸ ︷︷ ︸

kinetic energy

(6.1)

Hamilton’s equations give the dynamics:

dθ

dt
= ρ (position changes according to momentum) (6.2)

dρ

dt
= ∇ log p(θ | x) (momentum changes according to gradient) (6.3)

6.3 The algorithm

1. Sample momentum: Draw ρ ∼ N (0, I)—give the ball a random push.

2. Simulate dynamics: Integrate Hamilton’s equations for L steps of size ϵ, using the leapfrog

integrator :

ρt+ϵ/2 = ρt +
ϵ

2
∇ log p(θt | x) (6.4)

θt+ϵ = θt + ϵ ρt+ϵ/2 (6.5)

ρt+ϵ = ρt+ϵ/2 +
ϵ

2
∇ log p(θt+ϵ | x) (6.6)

Leapfrog is symplectic: it nearly conserves energy, keeping the acceptance rate high.

3. Metropolis correction: Accept with probability min(1, e−H(θ′,ρ′)+H(θ,ρ)). True Hamil-

tonian dynamics conserves energy exactly, so H(θ′, ρ′) = H(θ, ρ) and we’d always accept.

But leapfrog uses discrete steps, so energy drifts slightly; the accept-reject step catches

proposals where numerical errors pushed us into low-probability regions.

HMC shares the propose-then-accept structure of Metropolis, but differs in two ways:

• Proposal: Metropolis draws from a simple distribution (e.g., a Gaussian centered at the

current point). HMC simulates Hamiltonian dynamics to generate proposals that follow

the posterior’s contours.

8
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• Hyperparameters: Metropolis has one (step size σ). HMC has two: step size ϵ and

number of leapfrog steps L.

The accept-reject criterion has the same form—a ratio of probabilities at the proposed and current

points—but HMC’s physics-informed proposals achieve high acceptance rates (often >90%) even

for large moves.
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Figure 9. Metropolis random walk vs. Hamiltonian Monte Carlo. (a) Metropolis: the chain diffuses

slowly, taking many small steps. (b) HMC: gradient-informed trajectories make long, directed moves

across the posterior.

Figure 9 compares the two approaches. HMC achieves autocorrelation time τ nearly inde-

pendent of dimension—a large improvement over random walk (τ ∝ d). The cost is requiring

gradients, but automatic differentiation makes this routine.

7 Diagnostics

We can never prove MCMC has converged, but failures can often be detected (Figure 10).
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Figure 10. MCMC convergence diagnostics via trace plots. (a) Good mixing: the chain fluctuates around

a stable mean with no visible trends—this is what we want. (b) Poor mixing: a slow upward drift indicates

the chain hasn’t reached equilibrium; more samples or better tuning is needed. (c) Multiple chains: running

several chains from different starting points that converge to the same distribution is strong evidence of

convergence. The R̂ statistic formalizes this by comparing within-chain to between-chain variance.
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Trace plots. Plot each parameter against iteration number. A converged chain looks like

stationary noise.

Multiple chains. Run several chains from different starting points. The R̂ statistic compares

within-chain variance to between-chain variance; R̂ ≈ 1 indicates agreement.

Effective sample size. Neff = N/τ : from N correlated samples, we have information equiva-

lent to Neff independent ones. Report this, not the raw sample count.

8 Visualizing high-dimensional posteriors

In real problems, the posterior lives in many dimensions.

Corner plots. The standard visualization is the corner plot : a grid showing all pairwise 2D

marginals (off-diagonal) and 1D marginals (diagonal). Each dot in the 2D panels is an MCMC

sample; the contours are smoothed density estimates (typically kernel density estimation) en-

closing 68% and 95% of the probability mass. The diagonal panels show histograms of each

parameter’s marginal distribution. With thousands of samples, the histogram bins and density

contours converge to the true marginal posteriors.

Figure 11 shows a corner plot from the Planck satellite, which measured the cosmic microwave

background—light from 380,000 years after the Big Bang. Cosmologists ran MCMC to infer

parameters like the expansion rate H0 and matter density Ωm from these measurements. The

tilted contours in the H0–Ωm panel reveal a degeneracy: many combinations of expansion rate

and matter density fit the data equally well. This correlation would be invisible if we only

reported the marginal means and standard deviations.

Corner plots reveal degeneracies (tilted ellipses), multimodality (multiple peaks), and non-

Gaussianity (asymmetric marginals) that summary statistics hide.

9 Variational inference

MCMC gives exact samples but can be slow—especially for models with many parameters or

applications requiring real-time inference.

Variational inference (VI) trades exactness for speed by approximating the posterior with a

simpler (usually parameterized) distribution, turning inference into optimization of those param-

eters.

The idea. Choose a family Q of tractable distributions (e.g., Gaussians) and find the member

q∗ that best approximates the true posterior (Figure 12).

Measuring closeness. The Kullback–Leibler divergence measures how different two distribu-

tions are (Figure 13):

KL(q∥p) =
∫

q(θ) log
q(θ)

p(θ | x) dθ (9.1)

We want q∗ = argminq∈QKL(q(θ)∥p(θ | x)). But computing the KL requires the normalizing

constant p(x)—exactly the intractable integral we’re trying to avoid.

10



DS 595: AI Methods for Science Spring 2026

H0 [km/s/Mpc] = 67.468+0.604
−0.547

0.
30

0

0.
31

5

0.
33

0

Ω
m

Ωm = 0.312+0.008
−0.008

0.
78

0

0.
79

5

0.
81

0

0.
82

5

σ
8

σ8 = 0.803+0.008
−0.008

65
.6

66
.4

67
.2

68
.0

68
.8

H0 [km/s/Mpc]

0.
95

2

0.
96

0

0.
96

8

0.
97

6

n
s

0.
30

0

0.
31

5

0.
33

0

Ωm

0.
78

0

0.
79

5

0.
81

0

0.
82

5

σ8

0.
95

2

0.
96

0

0.
96

8

0.
97

6

ns

ns = 0.965+0.004
−0.005

Figure 11. Corner plot from the Planck satellite’s measurement of the cosmic microwave background

(CMB)—the afterglow of the Big Bang. The Planck collaboration ran MCMC to estimate cosmological

parameters from temperature and polarization fluctuations in the CMB; samples shown here are from

the PR4 data release. Parameters shown: Hubble constant H0 (expansion rate today), matter density

Ωm, fluctuation amplitude σ8, and spectral index ns (how fluctuations vary with scale). The H0–Ωm

anticorrelation arises because both affect the angular diameter distance to the CMB. Contours show 68%

and 95% credible regions. Data from Lemos & Lewis (2023).

10 The evidence lower bound (ELBO)

What we can and can’t compute. We can evaluate the joint p(x, θ) = p(x | θ)p(θ) for any
θ. We cannot compute the marginal p(x) =

∫
p(x, θ) dθ. The ELBO lets us optimize using only

the joint.

The key identity is:

log p(x) = ELBO(q) + KL(q∥p) (10.1)

where ELBO(q) = Eq[log p(x, θ)]− Eq[log q(θ)].

11
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Figure 12. The geometry of variational inference. The outer box is the space of all distributions; the

shaded region is the variational family Q. The true posterior p(θ | x) lies outside Q. Starting from an

initial approximation q0, we optimize to find q∗—the member of Q closest to the true posterior, minimizing

the KL divergence (dashed).
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Figure 13. KL divergence measures how different two distributions are. (Left) When q and p are similar,

KL is small. (Right) When q places mass where p is nearly zero, KL is large—the log(q/p) term blows up.

Since KL ≥ 0, the ELBO is a lower bound on the log-evidence:

ELBO(q) ≤ log p(x) (10.2)

And since log p(x) is constant with respect to q:

argmax
q

ELBO(q) = argmin
q

KL(q∥p) (10.3)

So maximizing the ELBO is equivalent to minimizing the KL divergence. The ELBO only

involves the joint p(x, θ) = p(x | θ)p(θ)—no normalizing constant needed. And we also get the

log-evidence lower bound “for free.”

11 The two forces in the ELBO

The ELBO can be rewritten as:

ELBO(q) = Eq[log p(x | θ)]︸ ︷︷ ︸
expected log-likelihood

− KL(q(θ)∥p(θ))︸ ︷︷ ︸
divergence from prior

(11.1)
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Figure 14. The two terms in the ELBO. The expected log-likelihood rewards q for placing mass where

the data are well-explained. The KL from prior penalizes deviation from prior beliefs.

Two opposing forces (Figure 14): the first term rewards q for concentrating on parameters

that explain the data well; the second penalizes q for deviating from the prior. The optimal q

balances these pressures.

12 Optimizing the ELBO

The variational distribution q(θ;ϕ) is parameterized by ϕ (e.g., means and variances for a Gaus-

sian). We maximize the ELBO with respect to ϕ using gradient ascent.

Computing gradients (optional).— The challenge is that the ELBO involves an expectation over

q, which depends on ϕ—we need to differentiate through an expectation whose distribution

depends on the parameters.

The reparameterization trick. Write samples as a deterministic transformation of

fixed noise. For a Gaussian q(θ;µ, σ) = N (µ, σ2):

θ = µ+ σ · ϵ, ϵ ∼ N (0, 1) (12.1)

Now θ is a deterministic function of ϕ = (µ, σ) and noise ϵ. The distribution we’re averaging

over no longer depends on ϕ, so we can move the gradient inside the expectation.

Stochastic gradient ascent. In practice: sample ϵ ∼ N (0, I), compute θ = µ + σ ⊙ ϵ,

estimate the gradient, and update ϕ. Often a single sample suffices for a noisy but unbiased

gradient estimate.
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13 Worked example: banana posterior

Consider a “banana” posterior—curved and non-Gaussian:

p(θ1, θ2 | x) ∝ exp

(
−1

2
θ21 −

1

2
(θ2 − θ21)

2

)
(13.1)

This posterior is curved: θ2 tends to follow θ21.

We’ll approximate it with a mean-field Gaussian: q(θ) = N (θ1;µ1, σ
2
1) ·N (θ2;µ2, σ

2
2)—a prod-

uct of independent Gaussians, one per parameter. Figure 15 shows VI optimization on this

posterior.
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Figure 15. VI on the banana posterior. (Top left) MCMC samples capture the curved shape. (Top

right) Evolution of the mean-field Gaussian q during optimization—it finds the right location but cannot

represent the curvature. (Bottom) The ELBO increases during optimization.

The optimized q∗ correctly locates the high-probability region. But notice what it misses:

the mean-field assumption forces independence, so the curved banana becomes an axis-aligned

ellipse. And to avoid placing mass in the low-probability “wings,” q shrinks, underestimating

uncertainty.

14 Limitations of VI

The variational family. The choice of Q controls the expressiveness–tractability tradeoff.

Mean-field Gaussians are fast but cannot capture correlations—as we saw with the banana. A

14
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full-covariance Gaussian captures linear correlations but still misses curvature. More expressive

families (normalizing flows) can represent complex posteriors but are harder to optimize.

Mode-seeking. KL(q∥p) penalizes q for placing mass where p is small. This makes VI mode-

seeking : when the posterior is multimodal, q concentrates on a single mode and ignores others

(Figure 16).
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Figure 16. Mode-seeking behavior. When the posterior is multimodal, VI concentrates on a single mode

rather than covering all modes.

Because VI is mode-seeking and limited by the variational family, it typically underestimates

posterior variance. When accurate uncertainty quantification is critical, MCMC may be the

better choice.

15 MCMC vs. VI

MCMC VI

Output Samples Approximate distribution

Accuracy Exact (asymptotically) Limited by family Q
Speed Can be slow Fast

Multimodality Can explore all modes Mode-seeking

Uncertainty Well-calibrated Often underestimates
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