<» - Neural Networks and Inductive Biases

“Look. The models, they just want to learn. You have to understand this. The models,
they just want to learn.” —Ilya Sutskever

1 Modeling unknown functions

Scientific data is full of relationships we can measure but not write down. A telescope records stel-
lar spectra; the mapping from spectrum to stellar composition is complex. A detector measures
particle interactions; extracting physical parameters requires inverting a complicated function.
We have (z,y) pairs and want to learn y = f(x), but f has no closed form.

The manifold hypothesis. Scientific data is high-dimensional, but it’s generated by low-
dimensional processes. A cosmological density field has millions of voxels, but it’s determined by
just a handful of cosmological parameters (£2,,,, og, Hp, ...) plus initial conditions. A protein
structure has thousands of atomic coordinates, but viable configurations are constrained by bond
lengths, angles, and evolutionary pressures to a far smaller space.

This is the manifold hypothesis: high-dimensional data concentrates near a lower-dimensional
manifold embedded in the ambient space. The manifold isn’t arbitrary—its geometry reflects the
underlying science, and nearby on the manifold correspond to similar physical states.

Why does this help? Learning becomes tractable because we only need to model the manifold,
not the full huge-dimensional space. The curse of dimensionality applies to the intrinsic dimension
(the manifold), not the ambient dimension (e.g., the pixel space).

Summary statistics as projections. Scientists have long exploited manifold structure through
hand-crafted summary statistics. Consider a cosmological density field. The raw data is a 3D
grid of densities—millions of numbers. But much of what we care about is captured by the power
spectrum P(k): how much structure exists at each spatial scale.

The power spectrum is a projection from the high-dimensional data manifold to a lower-
dimensional summary. It preserves certain information (the amplitude of fluctuations at each
scale) while discarding other information (the phases—where exactly the structures are located).
This is exactly what we want: compress the data while retaining what matters for the
scientific question we’re asking. Many different data points can map to the same summary.
Infinitely many cosmological fields share the same power spectrum—they differ only in their
phases. The summary defines equivalence classes on the manifold.

Why summaries work. Good summaries encode domain knowledge. The power spectrum is
translation-invariant by construction—shifting the field doesn’t change P(k). The symmetry is
built into the summary, so downstream models don’t have to learn it.

But summaries have limits. The power spectrum captures Gaussian structure perfectly but
misses higher-order correlations. Hand-crafted molecular fingerprints might miss subtle electronic
effects. Compressing data is a trade-off!

DS 595: AI Methods for Science Spring 2026

(a) Dat fold (b) Projection to summaries
a) Data manifo

® o
) Data
() ® manifold
'\ 00 @
Ambient space g
o ® o
280 .
& Samp summary,
different dath
' v
Summary statistic space

Figure 1. The manifold hypothesis and summary statistics. (a) Scientific data lives on a low-dimensional
manifold embedded in high-dimensional ambient space. Points of the same color represent different con-
figurations. (b) Summary statistics project the manifold to a lower-dimensional space. Multiple points on
the manifold (same color) map to a single summary—these are equivalence classes of “the same for my
purposes.”

Data-driven projections. Can we learn summaries without domain expertise? PCA finds
the linear projection that preserves the most variance—a data-driven approach that requires no
physics knowledge. But PCA assumes the data manifold is flat. It finds the best hyperplane
through the data, missing any curvature. When the manifold is nonlinear (as it usually is for
complex scientific data), PCA captures only a shadow of the true structure. Other data-driven
methods (t-SNE, UMAP, Isomap, ...) try to preserve local distances or neighborhood structure,
but they too struggle with complex manifolds and scale poorly to large datasets.

Learning nonlinear projections. Neural networks learn summaries from data. Instead of
hand-crafting which aspects of the manifold to preserve, we parameterize a flexible family of
projections and let optimization find what works for the task. The architecture encodes structural
assumptions (inductive biases) that constrain which projections are possible. Without them, we
might need impossibly large datasets to discover structure that physics already tells us must be
there.

2 Neural networks: composing simple functions

A neural network builds complex functions by composing simple ones. Apply a linear transfor-
mation, then a simple nonlinearity, then another linear transformation, and so on:

h1 = O'(Wlx + bl) (2.1)

DS 595: AI Methods for Science Spring 2026

h2 = O‘(thl + bg)
y = Wsha + b3

Each layer applies weights Wy, biases by, and a nonlinear activation o. This is a multilayer
perceptron (MLP).

Hidden, 1
raaen Hidden 2

O Output
O ®
O O,

O

Figure 2. A multilayer perceptron with two hidden layers. Each layer applies a linear transformation
followed by a nonlinearity. All neurons in adjacent layers are connected (“fully connected”).

ONOJOJOR
O00O0

Without o, the network collapses to a single linear map:
Wg(WlﬂZ + bl) + by = (WQW;[)JC + (Wzbl + bz) =Wz +¥ (2.4)

No matter how many layers, the result is linear. The nonlinearity is what gives depth its power.

What can nonlinearity do? Consider the XOR problem: two classes arranged so no single
line can separate them (Figure 3). A linear model fails. But a network with one hidden layer
can create a piecewise-linear decision boundary that correctly separates the classes. Adding more
layers and neurons produces smoother, more complex boundaries.

Common activations. The most common is ReLLU, which is piecewise linear: identity for
positive inputs, zero otherwise.

o(z) = max(0, 2) (2.5)

Universal approximation. With enough neurons, an MLP can approximate any continuous
function. This is reassuring but not really of any practical use—it says nothing about how many
parameters we need or whether we can find them by training.

3 Training deep networks

Deeper networks can represent more complex functions, but they’re harder to train. Gradients
must flow backward through many layers; they can vanish (shrink to zero) or explode (grow
unboundedly). Two techniques make deep training possible: residual connections and nor-
malization.

DS 595: AI Methods for Science Spring 2026

s (a) Not linearly separable (b) 1 hidden layer s (c) 2 hidden layers
. |. T ° Cla"ss 0 . T T T . T T
1.0k PY o Class 1 | i
’ ®d o ® Linear
05} ®» ®< © : :
° "’
g 0.0r . _
[g)
—0.5F ® ‘Sae -05F €% o &| wae 1
L L
~1.0f ° :‘ ° —~1.0f ~ ... ¢
—-1.5 L L ° L ~15 I I ° 1
’ -1 0 1 ’ -1 0 1
1 1

Figure 3. Nonlinearity enables complex decision boundaries. (a) An XOR-like classification problem: no
straight line separates the classes. (b) A single hidden layer creates a piecewise-linear boundary. (c) A
deeper network produces a smooth boundary that perfectly separates the data.

Residual connections. Instead of learning ' = F'(h), learn the residual h' = F(h) + h. The
network learns what to add to the input rather than computing the output from scratch.

Standard Residual

X

Figure 4. Residual (skip) connections. Left: a standard network computes F(z). Right: a residual block
computes F(x) + z. The skip connection provides a direct path for gradients, enabling training of very
deep networks.

Why does this help? Gradients can flow directly through the skip connection, bypassing the
layers entirely. Even if F' contributes small gradients, the identity path ensures signal reaches
early layers.

Normalization. During training, the distribution of each layer’s inputs shifts as earlier layers
change. Batch normalization fixes this by normalizing each feature across the mini-batch to
zero mean and unit variance. Layer mormalization normalizes across features for each sample
independently (standard in Transformers). Both smooth the loss landscape and reduce sensitivity
to initialization.

The modern recipe. Nearly all successful deep networks use both:

h' = h + F(Norm(h)) (3.1)

DS 595: AI Methods for Science Spring 2026

First normalize, then apply the learned transformation F', then add the residual. This combina-
tion enables training networks with hundreds of layers.

Optimization. We train by minimizing a loss function £(#) over parameters 6. Standard
gradient descent computes the gradient over the entire dataset and steps downhill:

0« 60— VoL (3.2)

The problem: gradient descent is deterministic. Where you end up depends entirely on where
you start. If you initialize in the wrong “valley” of the loss landscape, you descend to a local
minimum and stay there.

Stochastic gradient descent (SGD) fixes this by adding noise. Instead of computing the gra-
dient over all data, we use a random subset—a mini-batch—at each step. The gradient estimate
is noisy: it points roughly downhill, but not exactly. This noise lets SGD escape shallow local
minima. A step might go temporarily uphill, hopping from one valley to another. On average we
descend, but the stochasticity explores the landscape. Adam and related optimizers adapt the
learning rate per-parameter, using running estimates of gradient moments. Adam is often more
robust to hyperparameter choices, making it a good default.

Batch size. Mini-batch size controls the noise level. Larger batches give more accurate gradient
estimates—Iless noise, more direct descent. Smaller batches add more noise, helping escape bad
minima but making optimization noisier. There’s evidence that the noise from small batches acts
as implicit regularization, finding flatter minima that generalize better.

small gap

Loss

= Train loss
sharp = = Val loss

Parameters 0

Figure 5. Why flat minima generalize better. The validation loss landscape (dashed) is slightly shifted
from training (solid). At a sharp minimum, this shift causes a large generalization gap. At a flat minimum,
the same shift produces a much smaller gap—the solution is robust to distribution shift.

4 Autoencoders: learning to compress

Supervised learning requires labels. But labels are expensive, and much scientific data is unla-
beled. Can we learn useful representations without supervision?

DS 595: AI Methods for Science Spring 2026

The autoencoder idea. Train a network to reconstruct its input. This seems trivial—just
learn the identity function. The trick is to force the data through a bottleneck: a low-dimensional
intermediate representation.

high-dim high-dim

000 e~

bottleneck

Input x Latent z Reconstruction &

minimize ||z — &2

Figure 6. Autoencoder architecture. The encoder fy compresses high-dimensional input to a low-
dimensional latent representation z. The decoder g4 reconstructs the input from z. The bottleneck
forces the network to learn which information matters.

The encoder fp : RP? — R? maps input = to a low-dimensional latent code z = fy(x). The
decoder g4 : RY — RP reconstructs the input: & = g4(z). Train by minimizing reconstruction
error:

L=z — go(fo(x))| (4.1)

If d < D, the network can’t memorize inputs—it must learn to compress. The latent space z
captures whatever structure is needed for reconstruction.

Connection to the manifold hypothesis. Remember: data lives on a low-dimensional man-
ifold. The autoencoder learns to find it. The encoder projects data onto the manifold (approx-
imately); the decoder maps back to the ambient space. The latent dimension d is a hypothesis
about the manifold’s intrinsic dimension.

If d is too small, reconstruction suffers—you’ve lost information. If d is too large, the network
might not learn meaningful compression. In practice, you can tune d or let the network learn
sparsity through regularization.

The latent space often captures interpretable structure. An autoencoder trained on galaxy
images might learn latents corresponding to size, brightness, and morphology—without ever
being told these concepts exist. The network discovers the factors of variation that matter for
reconstruction.

This makes autoencoders useful for dimensionality reduction—The latent z is a compressed
representation, like PCA but nonlinear—and e.g. anomaly detection. Data far from the training
manifold reconstructs poorly; high reconstruction error flags anomalies. They can also denoise
data by training on corrupted inputs and reconstructing clean outputs.

Limitations and extensions. Standard autoencoders give you a latent space, but it may be
irregular—points don’t interpolate smoothly, and you can’t easily sample new data. Variational
autoencoders (VAEs) address this by imposing probabilistic structure on the latent space, en-
abling smooth interpolation and generation of new samples. We'll return to this when we discuss
generative models.

DS 595: AI Methods for Science Spring 2026

5 Matching architecture to data structure

Fully connected networks treat every input dimension as unrelated. For an image, pixel (0,0) has
no special relationship to pixel (0,1), even though they’re neighbors. The network must learn
from scratch that nearby pixels are correlated, that patterns can appear anywhere, that a galaxy
in the corner is the same as one in the center.

With enough data, a fully connected network can learn this. But it’s inefficient—we’re asking
the network to rediscover structure we already know. Scientific datasets can be limited in size,
and sample efficiency matters—often better to build known structure into the architecture.

The rest of this chapter develops architectures for different data types:

Data type Architecture Inductive bias

Images/grids CNN Translation invariance + locality
Sequences RNN Temporal order

Sets Deep Sets Permutation invariance

Graphs GNN Permutation invariance + edges

5.1 Grids —» CNNs
Images have two properties that fully connected networks ignore:

e Translation invariance: An edge is an edge, regardless of where it appears. A galaxy in
the corner should be classified the same as one in the center.

e Locality: To understand a pixel, look at its neighbors. Distant pixels are (initially) irrel-
evant. Global structure emerges from composing local features.

These assumptions reflect the physics of spatial data. The inductive bias is that patterns are
local and can appear anywhere.

Deriving convolutions. Start with a fully connected layer:
hij = Z Wijki T (5.1)
k,l
Weights Wik connect input position (k,1) to output position (4, j). For a megapixel image, this
requires 10'? parameters.
Impose translation invariance: The same pattern should be detected identically everywhere.
Weights cannot depend on absolute position—only on the offset. Let a =k — 4, b=1—j:
Wikt = Wap = hij = Wap Titajtb (5.2)
a,b
This is a convolution. The same small set of weights (a kernel) slides across the image, computing
the same operation at every position.
Impose locality: Only look at nearby pixels. Restrict to a small window:
hij = Z Z Wab Tita,j+b (5.3)
lal<k |b|<k
A 3 x 3 kernel has 9 parameters. We’ve gone from 102 to 9—while encoding exactly the structure
spatial data has.

DS 595: AI Methods for Science Spring 2026

Input
Kernel Output
2| 3| 8.9 .7
1| 4] 7|1 | .6 =i | =1 | =1 t
3 2 5 8 4 k 0 0 0 e
1.3 .2].4].3 41| 41| 41
21| 3| .2].1

Figure 7. Convolution: a small kernel slides across the image, computing a weighted sum at each position.
The same 9 weights are used everywhere (weight sharing). This kernel detects horizontal edges.

What convolutions learn. FEach kernel extracts a local pattern. A horizontal edge detector:

—1-1-1
0 0 0 (5.4)
+1 41 +1

This computes the difference between rows below and above—large where there’s a horizontal
intensity change. In a CNN, kernels are learned. The network discovers which local patterns are
useful for the task.

Channels. A single kernel detects one pattern. To detect multiple patterns, use multiple kernels
in parallel. Each kernel produces one output channel—a feature map detecting that pattern across
the image. A layer might have 64 or 256 channels, each detecting a different pattern.

The input can also have multiple channels: RGB images have 3 input channels; scientific
images might have spectral bands or multiple observables. Each output channel combines infor-
mation from all input channels:

hz(‘yc‘) = Z Z Wa(z?C) xz(’-c&-t)z,j—i—b (5.5)

cd ab

The kernel W(©¢) maps input channel ¢ to output channel ¢. For a 3 x 3 kernel with 64 input
and 128 output channels, this is 3 x 3 x 64 x 128 & 74,000 parameters—still far fewer than a fully
connected layer.

Building hierarchies. Stacking convolutional layers builds a hierarchy of features. Early layers
detect simple patterns like edges and gradients; later layers combine these into textures, shapes,
and eventually objects. Each layer’s receptive field—the input region affecting one output—grows
with depth. After several layers, each output unit “sees” a large region of the input.

Pooling (taking the max or average over small windows) downsamples spatial dimensions,
reducing computation and building robustness to small translations.

CNNs are the standard tool for any data on a grid: images (galaxy classification, medical
imaging), spectra (stellar spectra, mass spectra), spatial fields (climate data, cosmological density
fields). The same architecture that recognizes cats recognizes spiral galaxies—the inductive bias
(translation invariance, locality) matches the data structure.

DS 595: AI Methods for Science Spring 2026

FEdges .
Textures

3 ch 64 ct Lot
54 ch 128 ch 256 chr
—> >
Conv 2 Conv 3 FC Output
¢ Input Conv 1 ’

Spatial resolution decreases, channels increase

Figure 8. Hierarchical feature learning in CNNs. Early layers detect simple patterns (edges), later layers
detect complex structures (objects). Receptive field grows with depth; spatial resolution decreases.

5.2 Sequences - RNNs

Much scientific data is sequential: time series, trajectories, genetic sequences. The inductive bias:
order matters, and what happens now depends on what came before.

The idea. Process the sequence one element at a time, maintaining a hidden state h; that
summarizes what we’ve seen so far:

ht = O'(Whht_l + ngact + b) (56)

This is a recurrent neural network (RNN). The same function is applied at every timestep—
weight sharing across time, analogous to weight sharing across space in CNNs.

Same f at every step (weight sharing)

R EA S FAES VAR TS
ol

t=1 ht—O'Whht 1+Wl‘t+b) t=T

Figure 9. A recurrent neural network unrolled through time. The same function (with shared weights)
processes each input z; and the previous hidden state h;_; to produce the next hidden state h;. The final
state hp summarizes the entire sequence.

The trouble with RNNs. To learn from long sequences, gradients must flow backward
through many timesteps, each multiplying by Wj. If |[IW,|| < 1, gradients shrink exponentially
(vanishing gradients)—the network forgets distant inputs. Gated architectures (LSTMs, GRUs)
add learned gates that control information flow, helping gradients propagate. But even with
gating, RNNs process sequences sequentially—you can’t compute higg without first computing
hy through hgg.

DS 595: AI Methods for Science Spring 2026

Beyond RNNSs. Transformers process all positions in parallel using attention (discussed later).
They’ve largely replaced RNNs for most sequence tasks.

5.3 Sets and graphs — Deep Sets and GNNs

Much scientific data has relational structure: a molecule is atoms connected by bonds, a protein is
residues along a backbone, a physical system is particles interacting pairwise. These are graphs:
nodes (entities) and edges (relationships). The structure is irregular—mo grid, no canonical
ordering.

The key symmetry: permutation invariance. Relabeling nodes (e.g., calling atom 1 “atom
2” instead) shouldn’t change the output. This is the inductive bias for relational data.

Sets. Before graphs, consider a set—elements with no relationships. A point cloud. A bag of
features. How do we build a function f({z1,...,z,}) that is invariant to ordering?

The Deep Sets theorem. Any permutation-invariant function can be written as:

Fzr,ozn}) = p (Z ¢><xz~>> (5.7)
=1

where ¢ processes each element independently and p processes the aggregated result. This is the
minimal architecture that respects the symmetry of sets.

Input set Shared ¢ Embeddings

Aggregate

Figure 10. Deep Sets architecture. Each element x; passes through the same network ¢ (weight sharing).
Embeddings are summed (a symmetric operation), then processed by p to produce the output. Reordering
the inputs doesn’t change the sum, so the output is permutation-invariant.

Per-element outputs (equivariance). What if we want outputs for each element, not just
the whole set? For example: given particle positions, predict a label for each particle. The
architecture:

yi =1 |z, Y él)) (5.8)
j=1

10

DS 595: AI Methods for Science Spring 2026

Each output y; depends on z; and a global summary of the set. Permuting the inputs permutes
the outputs in the same way—this is permutation equivariance.

Deep Sets is the foundation for all permutation-invariant architectures. GNNs extend it by
adding edges.

5.3.1 GNNs: adding relational structure

A graph is a set with relationships. We have nodes V and edges £ connecting them. The key
operation in graph neural networks is message passing: nodes exchange information with their
neighbors.

The intuition. FEach node starts knowing only about itself. After one round of message passing,
it knows about its immediate neighbors. After two rounds, neighbors-of-neighbors. After k
rounds, each node has information about all nodes within £ hops.

1. Input graph 2. Compute messages 3. Aggregate & update

mj; = (hj, hiseji) hi=¢ (hi, D ieN() mjz‘)

Figure 11. Message passing in three stages. (1) Start with node features on a graph. (2) Each node
computes messages from its neighbors using a learned function . (3) Messages are aggregated (summed)
and combined with the node’s own features to produce updated representations.

A simple message-passing update equation.

WD = ¢ [b0, > w((h{ hP, ewy) (5.9)
ueN (v)

Unpacking this a bit:

1. Message: For each neighbor u of node v, compute a message ¥ (hy, hy, €4y). The message
depends on sender, receiver, and edge features.

2. Aggregate: Sum messages over all neighbors. This is where permutation invariance comes
from—sum doesn’t depend on order.

3. Update: Combine aggregated messages with the node’s current state using ¢ to get the
new representation.

Both ¢ and ¢ are learned networks (typically MLPs). The same networks apply to all nodes
and edges—parameter sharing across the graph.

11

DS 595: AI Methods for Science Spring 2026

Hidden dimensions (channels). Like CNNs, GNNs have a notion of channels: the hidden
dimension d of the node representations h, € R? A node’s “features” are a d-dimensional
vector—you can think of each dimension as detecting a different pattern, just like channels in a
CNN. More dimensions mean more expressive power but also more parameters.

Connection to Deep Sets and CNNs. Message passing generalizes both:

e Deep Sets is a GNN on a graph with no edges (or a fully-connected graph with uniform
edges).

e CNN is a GNN on a grid graph where each pixel connects to its spatial neighbors. The
kernel weights are the message function.

From nodes to graphs. Message passing produces node representations h,. For graph-level
predictions (is this molecule toxic?), pool the nodes:

hg =) hy (5.10)

veY

This is exactly Deep Sets applied to the final node representations.

Graph attention. Standard message passing treats all neighbors equally (or weights them only
by edge features). But different neighbors may have different importance—and the importance
may depend on the content of the nodes, not just the graph structure. Attention learns to
weight neighbors by relevance:
hi} = Z oy * P (ha) (5.11)
ueN (v)

The attention weights «,,, are computed from node features:

exp(f (hu, hw))
Zwe]\/(v) exp(f (huw, hv))

(5.12)

Qo =

The scoring function f (typically a small network or inner product) computes how relevant
neighbor u is for node v. The softmax ensures weights sum to 1.

Why attention helps. Consider predicting a molecule’s reactivity. A carbon atom may have
several neighbors, but not all matter equally—the oxygen in a carbonyl group matters more than
a distant methyl. Attention learns these patterns from data.

Attention also provides some (limited) interpretability: the learned weights v, show which
neighbors influenced each node’s representation.

6 Attention as a unifying primitive

Attention is a general mechanism that unifies several architectures. The core operation is always
the same: compute a weighted combination of inputs. What varies is which inputs participate
and whether the weights are fixed or content-dependent. Figure 13 illustrates the four main
patterns.

12

DS 595: AI Methods for Science Spring 2026

Standard GNN Graph Attention

N 0
: :TJ.I
1

L exp(f(h;,hi)) i . .
Aji = 2keN(d) eij(f(hk»hi)) hi = ZjeN(i) aji - $(hy)

All neighbors equa Learned aj; weights

Figure 12. Graph attention learns which neighbors matter. Left: standard GNN weights all neighbors
equally. Right: attention weights neighbors by learned relevance scores o;, allowing the network to focus
on the most informative connections.

Arrow thickness oc attention weight o
~.A/
b / /).(

Transformer
GNN dense (learned)

MLP CNN sparse (learned)
dense (fixed) local (fixed)

Figure 13. Attention patterns across architectures. Dark nodes are queries; arrows show which inputs
contribute. MLP: all inputs, fixed weights. CNN: local inputs, fixed weights (same kernel everywhere).
GNN: graph neighbors, learned weights. Transformer: all inputs, learned weights. Arrow thickness
indicates attention weight.

The general form. Given a query q, keys ki, ..., k,, and values vy, ..., vy:

n
ks
output = Zai -v;, where «; = exp(q - ki) (6.1)

— > exp(q - kj)

The query asks “what am I looking for?” The keys say “what do I contain?” The dot product
measures relevance. This is scaled dot-product attention, the building block of Transformers.

CNNs as fixed local attention. A convolution computes:
hij =Y Wab - Titajtb (6.2)
a,b

This is attention where the weights W,;, are fixed (learned once, used everywhere) and the neigh-
borhood is local (only nearby pixels). The “attention pattern” is the same at every position—a
fixed 3 x 3 or 5 x 5 window.

GNNs as sparse attention. Graph attention computes:

ueN (v)

13

DS 595: AI Methods for Science Spring 2026

The weights oy, are content-dependent (computed from node features), but attention is restricted
to graph neighbors. The graph structure determines who can attend to whom; the attention
mechanism determines how much.

Transformers as dense attention. Self-attention in Transformers:
n
hi = Z Oéz‘j . Uj, Oéij = SOftman(qi . /fj/\/g) (6.4)
j=1
Every position attends to every other position. No locality constraint, no predefined graph. The

attention weights are entirely learned from content. This is maximally flexible but costs O(n?)
computation.

MLPs as structure-free mixing. Where do MLPs fit? A fully connected layer computes:
n
hi = Z W,‘j . .%'j (6.5)
j=1

Every output depends on every input, with fixed learned weights W;;. This is like dense attention
but without content-dependence—the “attention pattern” is baked into the weights at training
time and doesn’t adapt to the input. MLPs assume no structure: no locality, no graph, no notion
of which inputs should interact. Maximum flexibility, but also maximum data requirements.

The tradeoff. These four represent different points on a structure-flexibility spectrum:

MLP Transformer GNN CNN
Pattern Dense global Dense global Sparse (graph) Fixed local
Weights Fixed Content-dep. Content-dep. Fixed
Connectivity All pairs All pairs Graph neighbors Grid neighbors
Structure assumed None Weak Medium Strong

Reading left to right: MLPs assume no structure (any input can affect any output). Trans-
formers add content-dependent weights that adapt to each input. GNNs restrict connectivity to
graph neighbors. CNNs add the strongest prior: local, translation-invariant patterns.

7 Why overparameterized networks work

Modern neural networks have far more parameters than training examples. A ResNet for Im-
ageNet has 25 million parameters trained on 1.2 million images. Classical statistics says this
should overfit catastrophically—with enough parameters, you can memorize the training set and
learn nothing generalizable. Yet these networks generalize well. Why?

Traditional learning theory says: more parameters = more ways to fit noise = worse gen-
eralization. The optimal model complexity balances fitting the data against overfitting. Add
parameters until validation error starts rising. Neural networks violate this. They can interpo-
late—Afit the training data perfectly, even with noisy labels—yet still generalize. The test error
doesn’t explode when you add more parameters past the interpolation threshold. Instead, it often
decreases (the “double descent” phenomenon).

14

DS 595: AI Methods for Science Spring 2026

Why interpolation doesn’t necessarily overfit. Among all functions that fit the training
data, SGD finds a particular one—and that one tends to be simple.

Think of it geometrically. In high dimensions, the set of parameters that perfectly fit the
training data is a large subspace (when you have more parameters than constraints). Within this
subspace, there are infinitely many solutions. Some are jagged and complex; others are smooth
and simple. SGD, starting from small random weights and taking small steps, tends to find
smooth solutions.

Overparameterization smooths the loss landscape. With more parameters, the loss land-
scape becomes better-behaved. Instead of one narrow valley, there are many paths to low loss, so
optimization is less likely to get stuck. Overparameterized networks tend to find flat minima—
regions where the loss is low over a large volume of parameter space—which correspond to simpler
functions that generalize better. Good solutions aren’t isolated points but form connected regions;
you can move between different good solutions without crossing high-loss barriers.

Inductive bias from optimization. The architecture constrains what the network can rep-
resent. But the optimizer constrains which of those representable functions it actually finds.
SGD with small learning rates, starting from small weights, has an implicit bias toward simpler
functions. This “implicit regularization” is as important as the explicit architecture. (We’ll come
back to this when discussing symmetry-based architectures.)

What this means in practice. Don’t fear overparameterization. A network with 10x more
parameters than data points may generalize better than a smaller one—if trained properly. The
combination of architecture (encoding the right symmetries) and optimization (finding smooth
solutions) produces good generalization even in the overparameterized regime.

A The QM9 dataset

QM9 is a benchmark dataset of 134,000 small organic molecules with quantum-mechanical prop-
erties computed from density functional theory (DFT). Each molecule contains up to 9 heavy
atoms (C, N, O, F) plus hydrogens. The dataset provides a concrete example of molecular prop-
erty prediction: given a molecule’s structure, predict its quantum properties without expensive
DFT calculations.

Molecules as graphs. A molecule is naturally represented as a graph: atoms are nodes, chem-
ical bonds are edges. This is the input to a GNN. Figure 14 shows the concrete representation.

Node features. FEach atom is represented by an 11-dimensional feature vector:

Indices Feature Description

04 Atom type One-hot encoding (H, C, N, O, F)
5 Atomic number Integer (1, 6, 7, 8, 9)

6-8 Hybridization One-hot (sp, sp?, sp?)

9 Aromatic Binary (0 or 1)

10 Hydrogen count Number of attached hydrogens

15

DS 595: AI Methods for Science Spring 2026

QM9 molecule as graph: CCCO

(b) Graph structure (c) Node features h; € R*
Node | Atom Z nH
Molecul
(a) Molecule 0 G 6 5
1 C 6 2
/\/OH 2 C 6 2
3 O 8 1

Figure 14. QM9 data representation. (a) A molecule visualized with RDKit. (b) The same molecule as a
graph: heavy atoms are nodes, bonds are edges. Hydrogens are implicit—encoded in the nH feature rather
than as explicit nodes. (c) Each node has an 11-dimensional feature vector; nH indicates the number of
attached hydrogens.

Edge features. Each bond has a 4-dimensional feature vector: a one-hot encoding of bond
type (single, double, triple, aromatic). Edges are stored bidirectionally—each bond (i, j) appears
twice as directed edges i — j and j — 3.

Target properties. QM9 provides 19 quantum-mechanical properties for each molecule, in-
cluding:

¢ HOMO/LUMO energies: Frontier orbital energies (eV)

¢ HOMO-LUMO gap: Electronic excitation energy (eV)

Dipole moment: Molecular polarity (Debye)

Polarizability: Response to electric field (Bohr?)
e Thermodynamic properties: Internal energy, enthalpy, free energy, heat capacity

These properties determine a molecule’s electronic, optical, and thermodynamic behavior. Pre-
dicting them from structure alone—bypassing expensive DFT calculations—is the goal of molec-
ular property prediction.

QM9 is small enough to train on quickly but rich enough to benchmark different architec-
tures. This makes QM9 a good benchmark for comparing how different inductive biases affect
learning on the same underlying data.

16

	Modeling unknown functions
	Neural networks: composing simple functions
	Training deep networks
	Autoencoders: learning to compress
	Matching architecture to data structure
	Grids CNNs
	Sequences RNNs
	Sets and graphs Deep Sets and GNNs
	GNNs: adding relational structure

	Attention as a unifying primitive
	Why overparameterized networks work
	The QM9 dataset

