
· Neural Networks and Inductive Biases

“Look. The models, they just want to learn. You have to understand this. The models,

they just want to learn.” —Ilya Sutskever

1 Modeling unknown functions

Scientific data is full of relationships we can measure but not write down. A telescope records stel-

lar spectra; the mapping from spectrum to stellar composition is complex. A detector measures

particle interactions; extracting physical parameters requires inverting a complicated function.

We have (x, y) pairs and want to learn y = f(x), but f has no closed form.

The manifold hypothesis. Scientific data is high-dimensional, but it’s generated by low-

dimensional processes. A cosmological density field has millions of voxels, but it’s determined by

just a handful of cosmological parameters (Ωm, σ8, H0, . . .) plus initial conditions. A protein

structure has thousands of atomic coordinates, but viable configurations are constrained by bond

lengths, angles, and evolutionary pressures to a far smaller space.

This is the manifold hypothesis: high-dimensional data concentrates near a lower-dimensional

manifold embedded in the ambient space. The manifold isn’t arbitrary—its geometry reflects the

underlying science, and nearby on the manifold correspond to similar physical states.

Why does this help? Learning becomes tractable because we only need to model the manifold,

not the full huge-dimensional space. The curse of dimensionality applies to the intrinsic dimension

(the manifold), not the ambient dimension (e.g., the pixel space).

Summary statistics as projections. Scientists have long exploited manifold structure through

hand-crafted summary statistics. Consider a cosmological density field. The raw data is a 3D

grid of densities—millions of numbers. But much of what we care about is captured by the power

spectrum P (k): how much structure exists at each spatial scale.

The power spectrum is a projection from the high-dimensional data manifold to a lower-

dimensional summary. It preserves certain information (the amplitude of fluctuations at each

scale) while discarding other information (the phases—where exactly the structures are located).

This is exactly what we want: compress the data while retaining what matters for the

scientific question we’re asking. Many different data points can map to the same summary.

Infinitely many cosmological fields share the same power spectrum—they differ only in their

phases. The summary defines equivalence classes on the manifold.

Why summaries work. Good summaries encode domain knowledge. The power spectrum is

translation-invariant by construction—shifting the field doesn’t change P (k). The symmetry is

built into the summary, so downstream models don’t have to learn it.

But summaries have limits. The power spectrum captures Gaussian structure perfectly but

misses higher-order correlations. Hand-crafted molecular fingerprints might miss subtle electronic

effects. Compressing data is a trade-off!

1

DS 595: AI Methods for Science Spring 2026

(a) Data manifold

Ambient space

Summary statistic space

(b) Projection to summaries

Data
manifold

Same summary,
different data

Figure 1. The manifold hypothesis and summary statistics. (a) Scientific data lives on a low-dimensional

manifold embedded in high-dimensional ambient space. Points of the same color represent different con-

figurations. (b) Summary statistics project the manifold to a lower-dimensional space. Multiple points on

the manifold (same color) map to a single summary—these are equivalence classes of “the same for my

purposes.”

Data-driven projections. Can we learn summaries without domain expertise? PCA finds

the linear projection that preserves the most variance—a data-driven approach that requires no

physics knowledge. But PCA assumes the data manifold is flat. It finds the best hyperplane

through the data, missing any curvature. When the manifold is nonlinear (as it usually is for

complex scientific data), PCA captures only a shadow of the true structure. Other data-driven

methods (t-SNE, UMAP, Isomap, . . .) try to preserve local distances or neighborhood structure,

but they too struggle with complex manifolds and scale poorly to large datasets.

Learning nonlinear projections. Neural networks learn summaries from data. Instead of

hand-crafting which aspects of the manifold to preserve, we parameterize a flexible family of

projections and let optimization find what works for the task. The architecture encodes structural

assumptions (inductive biases) that constrain which projections are possible. Without them, we

might need impossibly large datasets to discover structure that physics already tells us must be

there.

2 Neural networks: composing simple functions

A neural network builds complex functions by composing simple ones. Apply a linear transfor-

mation, then a simple nonlinearity, then another linear transformation, and so on:

h1 = σ(W1x+ b1) (2.1)

2

DS 595: AI Methods for Science Spring 2026

h2 = σ(W2h1 + b2) (2.2)

y =W3h2 + b3 (2.3)

Each layer applies weights Wℓ, biases bℓ, and a nonlinear activation σ. This is a multilayer

perceptron (MLP).

x1

x2

x3

x4

y1

y2

Input
Hidden 1

Hidden 2

Output

Figure 2. A multilayer perceptron with two hidden layers. Each layer applies a linear transformation

followed by a nonlinearity. All neurons in adjacent layers are connected (“fully connected”).

Without σ, the network collapses to a single linear map:

W2(W1x+ b1) + b2 = (W2W1)x+ (W2b1 + b2) =W ′x+ b′ (2.4)

No matter how many layers, the result is linear. The nonlinearity is what gives depth its power.

What can nonlinearity do? Consider the XOR problem: two classes arranged so no single

line can separate them (Figure 3). A linear model fails. But a network with one hidden layer

can create a piecewise-linear decision boundary that correctly separates the classes. Adding more

layers and neurons produces smoother, more complex boundaries.

Common activations. The most common is ReLU, which is piecewise linear: identity for

positive inputs, zero otherwise.

σ(z) = max(0, z) (2.5)

Universal approximation. With enough neurons, an MLP can approximate any continuous

function. This is reassuring but not really of any practical use—it says nothing about how many

parameters we need or whether we can find them by training.

3 Training deep networks

Deeper networks can represent more complex functions, but they’re harder to train. Gradients

must flow backward through many layers; they can vanish (shrink to zero) or explode (grow

unboundedly). Two techniques make deep training possible: residual connections and nor-

malization.

3

DS 595: AI Methods for Science Spring 2026

−1 0 1

x1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
x

2

(a) Not linearly separable

Class 0
Class 1
Linear

−1 0 1

x1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
(b) 1 hidden layer

−1 0 1

x1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
(c) 2 hidden layers

Figure 3. Nonlinearity enables complex decision boundaries. (a) An XOR-like classification problem: no

straight line separates the classes. (b) A single hidden layer creates a piecewise-linear boundary. (c) A

deeper network produces a smooth boundary that perfectly separates the data.

Residual connections. Instead of learning h′ = F (h), learn the residual h′ = F (h) + h. The

network learns what to add to the input rather than computing the output from scratch.

Standard

x

F

F (x)

Residual

x

F

+

F (x) + x

skip

Figure 4. Residual (skip) connections. Left: a standard network computes F (x). Right: a residual block

computes F (x) + x. The skip connection provides a direct path for gradients, enabling training of very

deep networks.

Why does this help? Gradients can flow directly through the skip connection, bypassing the

layers entirely. Even if F contributes small gradients, the identity path ensures signal reaches

early layers.

Normalization. During training, the distribution of each layer’s inputs shifts as earlier layers

change. Batch normalization fixes this by normalizing each feature across the mini-batch to

zero mean and unit variance. Layer normalization normalizes across features for each sample

independently (standard in Transformers). Both smooth the loss landscape and reduce sensitivity

to initialization.

The modern recipe. Nearly all successful deep networks use both:

h′ = h+ F (Norm(h)) (3.1)

4

DS 595: AI Methods for Science Spring 2026

First normalize, then apply the learned transformation F , then add the residual. This combina-

tion enables training networks with hundreds of layers.

Optimization. We train by minimizing a loss function L(θ) over parameters θ. Standard

gradient descent computes the gradient over the entire dataset and steps downhill:

θ ← θ − η∇θL (3.2)

The problem: gradient descent is deterministic. Where you end up depends entirely on where

you start. If you initialize in the wrong “valley” of the loss landscape, you descend to a local

minimum and stay there.

Stochastic gradient descent (SGD) fixes this by adding noise. Instead of computing the gra-

dient over all data, we use a random subset—a mini-batch—at each step. The gradient estimate

is noisy: it points roughly downhill, but not exactly. This noise lets SGD escape shallow local

minima. A step might go temporarily uphill, hopping from one valley to another. On average we

descend, but the stochasticity explores the landscape. Adam and related optimizers adapt the

learning rate per-parameter, using running estimates of gradient moments. Adam is often more

robust to hyperparameter choices, making it a good default.

Batch size. Mini-batch size controls the noise level. Larger batches give more accurate gradient

estimates—less noise, more direct descent. Smaller batches add more noise, helping escape bad

minima but making optimization noisier. There’s evidence that the noise from small batches acts

as implicit regularization, finding flatter minima that generalize better.

Parameters θ

L
o
ss large

gap

small gap

sharp

flat

Train loss
Val loss

Figure 5. Why flat minima generalize better. The validation loss landscape (dashed) is slightly shifted

from training (solid). At a sharp minimum, this shift causes a large generalization gap. At a flat minimum,

the same shift produces a much smaller gap—the solution is robust to distribution shift.

4 Autoencoders: learning to compress

Supervised learning requires labels. But labels are expensive, and much scientific data is unla-

beled. Can we learn useful representations without supervision?

5

DS 595: AI Methods for Science Spring 2026

The autoencoder idea. Train a network to reconstruct its input. This seems trivial—just

learn the identity function. The trick is to force the data through a bottleneck : a low-dimensional

intermediate representation.

Input x

high-dim

fθ

Latent z

low-dim

gϕ

Reconstruction x̂

high-dim

minimize ∥x− x̂∥2

bottleneck

Figure 6. Autoencoder architecture. The encoder fθ compresses high-dimensional input to a low-

dimensional latent representation z. The decoder gϕ reconstructs the input from z. The bottleneck

forces the network to learn which information matters.

The encoder fθ : RD → Rd maps input x to a low-dimensional latent code z = fθ(x). The

decoder gϕ : Rd → RD reconstructs the input: x̂ = gϕ(z). Train by minimizing reconstruction

error:

L = ∥x− gϕ(fθ(x))∥2 (4.1)

If d ≪ D, the network can’t memorize inputs—it must learn to compress. The latent space z

captures whatever structure is needed for reconstruction.

Connection to the manifold hypothesis. Remember: data lives on a low-dimensional man-

ifold. The autoencoder learns to find it. The encoder projects data onto the manifold (approx-

imately); the decoder maps back to the ambient space. The latent dimension d is a hypothesis

about the manifold’s intrinsic dimension.

If d is too small, reconstruction suffers—you’ve lost information. If d is too large, the network

might not learn meaningful compression. In practice, you can tune d or let the network learn

sparsity through regularization.

The latent space often captures interpretable structure. An autoencoder trained on galaxy

images might learn latents corresponding to size, brightness, and morphology—without ever

being told these concepts exist. The network discovers the factors of variation that matter for

reconstruction.

This makes autoencoders useful for dimensionality reduction—The latent z is a compressed

representation, like PCA but nonlinear—and e.g. anomaly detection. Data far from the training

manifold reconstructs poorly; high reconstruction error flags anomalies. They can also denoise

data by training on corrupted inputs and reconstructing clean outputs.

Limitations and extensions. Standard autoencoders give you a latent space, but it may be

irregular—points don’t interpolate smoothly, and you can’t easily sample new data. Variational

autoencoders (VAEs) address this by imposing probabilistic structure on the latent space, en-

abling smooth interpolation and generation of new samples. We’ll return to this when we discuss

generative models.

6

DS 595: AI Methods for Science Spring 2026

5 Matching architecture to data structure

Fully connected networks treat every input dimension as unrelated. For an image, pixel (0, 0) has

no special relationship to pixel (0, 1), even though they’re neighbors. The network must learn

from scratch that nearby pixels are correlated, that patterns can appear anywhere, that a galaxy

in the corner is the same as one in the center.

With enough data, a fully connected network can learn this. But it’s inefficient—we’re asking

the network to rediscover structure we already know. Scientific datasets can be limited in size,

and sample efficiency matters—often better to build known structure into the architecture.

The rest of this chapter develops architectures for different data types:

Data type Architecture Inductive bias

Images/grids CNN Translation invariance + locality

Sequences RNN Temporal order

Sets Deep Sets Permutation invariance

Graphs GNN Permutation invariance + edges

5.1 Grids → CNNs

Images have two properties that fully connected networks ignore:

• Translation invariance: An edge is an edge, regardless of where it appears. A galaxy in

the corner should be classified the same as one in the center.

• Locality: To understand a pixel, look at its neighbors. Distant pixels are (initially) irrel-

evant. Global structure emerges from composing local features.

These assumptions reflect the physics of spatial data. The inductive bias is that patterns are

local and can appear anywhere.

Deriving convolutions. Start with a fully connected layer:

hij =
∑
k,l

Wijkl xkl (5.1)

Weights Wijkl connect input position (k, l) to output position (i, j). For a megapixel image, this

requires 1012 parameters.

Impose translation invariance: The same pattern should be detected identically everywhere.

Weights cannot depend on absolute position—only on the offset. Let a = k − i, b = l − j:

Wijkl =Wab ⇒ hij =
∑
a,b

Wab xi+a,j+b (5.2)

This is a convolution. The same small set of weights (a kernel) slides across the image, computing

the same operation at every position.

Impose locality : Only look at nearby pixels. Restrict to a small window:

hij =
∑
|a|≤k

∑
|b|≤k

Wab xi+a,j+b (5.3)

A 3×3 kernel has 9 parameters. We’ve gone from 1012 to 9—while encoding exactly the structure

spatial data has.

7

DS 595: AI Methods for Science Spring 2026

.2 .3 .8 .9 .7

.1 .4 .7 1. .6

.3 .2 .5 .8 .4

.1 .3 .2 .4 .3

.2 .1 .3 .2 .1

−1 −1 −1

0 0 0

+1 +1 +1

· · 1.2

· · ·

· · ·

∗ =

Input

Kernel Output

Figure 7. Convolution: a small kernel slides across the image, computing a weighted sum at each position.

The same 9 weights are used everywhere (weight sharing). This kernel detects horizontal edges.

What convolutions learn. Each kernel extracts a local pattern. A horizontal edge detector:−1 −1 −10 0 0

+1 +1 +1

 (5.4)

This computes the difference between rows below and above—large where there’s a horizontal

intensity change. In a CNN, kernels are learned. The network discovers which local patterns are

useful for the task.

Channels. A single kernel detects one pattern. To detect multiple patterns, use multiple kernels

in parallel. Each kernel produces one output channel—a feature map detecting that pattern across

the image. A layer might have 64 or 256 channels, each detecting a different pattern.

The input can also have multiple channels: RGB images have 3 input channels; scientific

images might have spectral bands or multiple observables. Each output channel combines infor-

mation from all input channels:

h
(c)
ij =

∑
c′

∑
a,b

W
(c,c′)
ab x

(c′)
i+a,j+b (5.5)

The kernel W (c,c′) maps input channel c′ to output channel c. For a 3 × 3 kernel with 64 input

and 128 output channels, this is 3×3×64×128 ≈ 74,000 parameters—still far fewer than a fully

connected layer.

Building hierarchies. Stacking convolutional layers builds a hierarchy of features. Early layers

detect simple patterns like edges and gradients; later layers combine these into textures, shapes,

and eventually objects. Each layer’s receptive field—the input region affecting one output—grows

with depth. After several layers, each output unit “sees” a large region of the input.

Pooling (taking the max or average over small windows) downsamples spatial dimensions,

reducing computation and building robustness to small translations.

CNNs are the standard tool for any data on a grid: images (galaxy classification, medical

imaging), spectra (stellar spectra, mass spectra), spatial fields (climate data, cosmological density

fields). The same architecture that recognizes cats recognizes spiral galaxies—the inductive bias

(translation invariance, locality) matches the data structure.

8

DS 595: AI Methods for Science Spring 2026

Input

3 ch

Conv 1

64 ch

Edges

Conv 2

128 ch

Textures

Conv 3

256 ch

Parts

FC Output

Spatial resolution decreases, channels increase

Figure 8. Hierarchical feature learning in CNNs. Early layers detect simple patterns (edges), later layers

detect complex structures (objects). Receptive field grows with depth; spatial resolution decreases.

5.2 Sequences → RNNs

Much scientific data is sequential : time series, trajectories, genetic sequences. The inductive bias:

order matters, and what happens now depends on what came before.

The idea. Process the sequence one element at a time, maintaining a hidden state ht that

summarizes what we’ve seen so far:

ht = σ(Whht−1 +Wxxt + b) (5.6)

This is a recurrent neural network (RNN). The same function is applied at every timestep—

weight sharing across time, analogous to weight sharing across space in CNNs.

f f f f

x1 x2 x3 xT

h1 h2 h3 hT

h1 h2 · · ·h0

t = 1 t = T

Same f at every step (weight sharing)

ht = σ(Whht−1 +Wxxt + b)

Figure 9. A recurrent neural network unrolled through time. The same function (with shared weights)

processes each input xt and the previous hidden state ht−1 to produce the next hidden state ht. The final

state hT summarizes the entire sequence.

The trouble with RNNs. To learn from long sequences, gradients must flow backward

through many timesteps, each multiplying by Wh. If ∥Wh∥ < 1, gradients shrink exponentially

(vanishing gradients)—the network forgets distant inputs. Gated architectures (LSTMs, GRUs)

add learned gates that control information flow, helping gradients propagate. But even with

gating, RNNs process sequences sequentially—you can’t compute h100 without first computing

h1 through h99.

9

DS 595: AI Methods for Science Spring 2026

Beyond RNNs. Transformers process all positions in parallel using attention (discussed later).

They’ve largely replaced RNNs for most sequence tasks.

5.3 Sets and graphs → Deep Sets and GNNs

Much scientific data has relational structure: a molecule is atoms connected by bonds, a protein is

residues along a backbone, a physical system is particles interacting pairwise. These are graphs:

nodes (entities) and edges (relationships). The structure is irregular—no grid, no canonical

ordering.

The key symmetry: permutation invariance. Relabeling nodes (e.g., calling atom 1 “atom

2” instead) shouldn’t change the output. This is the inductive bias for relational data.

Sets. Before graphs, consider a set—elements with no relationships. A point cloud. A bag of

features. How do we build a function f({x1, . . . , xn}) that is invariant to ordering?

The Deep Sets theorem. Any permutation-invariant function can be written as:

f({x1, . . . , xn}) = ρ

(
n∑

i=1

ϕ(xi)

)
(5.7)

where ϕ processes each element independently and ρ processes the aggregated result. This is the

minimal architecture that respects the symmetry of sets.

x1

x2

x3

...

xn

ϕ

ϕ

ϕ

ϕ

h1

h2

h3

hn

∑
ρ y

Input set Shared ϕ Embeddings

Aggregate
Output

Figure 10. Deep Sets architecture. Each element xi passes through the same network ϕ (weight sharing).

Embeddings are summed (a symmetric operation), then processed by ρ to produce the output. Reordering

the inputs doesn’t change the sum, so the output is permutation-invariant.

Per-element outputs (equivariance). What if we want outputs for each element, not just

the whole set? For example: given particle positions, predict a label for each particle. The

architecture:

yi = ψ

xi, n∑
j=1

ϕ(xj)

 (5.8)

10

DS 595: AI Methods for Science Spring 2026

Each output yi depends on xi and a global summary of the set. Permuting the inputs permutes

the outputs in the same way—this is permutation equivariance.

Deep Sets is the foundation for all permutation-invariant architectures. GNNs extend it by

adding edges.

5.3.1 GNNs: adding relational structure

A graph is a set with relationships. We have nodes V and edges E connecting them. The key

operation in graph neural networks is message passing: nodes exchange information with their

neighbors.

The intuition. Each node starts knowing only about itself. After one round of message passing,

it knows about its immediate neighbors. After two rounds, neighbors-of-neighbors. After k

rounds, each node has information about all nodes within k hops.

1. Input graph

hi

hj

hk

hl

2. Compute messages

hi

hj

hk

hl

m
ji

mki

mli

3. Aggregate & update

h′i

hj

hk

hl

mji = ψ(hj , hi, eji) h′i = ϕ
(
hi,
∑

j∈N (i)mji

)
Figure 11. Message passing in three stages. (1) Start with node features on a graph. (2) Each node

computes messages from its neighbors using a learned function ψ. (3) Messages are aggregated (summed)

and combined with the node’s own features to produce updated representations.

A simple message-passing update equation.

h(ℓ+1)
v = ϕ

h(ℓ)v ,
∑

u∈N (v)

ψ(h(ℓ)u , h(ℓ)v , euv)

 (5.9)

Unpacking this a bit:

1. Message: For each neighbor u of node v, compute a message ψ(hu, hv, euv). The message

depends on sender, receiver, and edge features.

2. Aggregate: Sum messages over all neighbors. This is where permutation invariance comes

from—sum doesn’t depend on order.

3. Update: Combine aggregated messages with the node’s current state using ϕ to get the

new representation.

Both ψ and ϕ are learned networks (typically MLPs). The same networks apply to all nodes

and edges—parameter sharing across the graph.

11

DS 595: AI Methods for Science Spring 2026

Hidden dimensions (channels). Like CNNs, GNNs have a notion of channels: the hidden

dimension d of the node representations hv ∈ Rd. A node’s “features” are a d-dimensional

vector—you can think of each dimension as detecting a different pattern, just like channels in a

CNN. More dimensions mean more expressive power but also more parameters.

Connection to Deep Sets and CNNs. Message passing generalizes both:

• Deep Sets is a GNN on a graph with no edges (or a fully-connected graph with uniform

edges).

• CNN is a GNN on a grid graph where each pixel connects to its spatial neighbors. The

kernel weights are the message function.

From nodes to graphs. Message passing produces node representations hv. For graph-level

predictions (is this molecule toxic?), pool the nodes:

hG =
∑
v∈V

hv (5.10)

This is exactly Deep Sets applied to the final node representations.

Graph attention. Standard message passing treats all neighbors equally (or weights them only

by edge features). But different neighbors may have different importance—and the importance

may depend on the content of the nodes, not just the graph structure. Attention learns to

weight neighbors by relevance:

h′v =
∑

u∈N (v)

αuv · ψ(hu) (5.11)

The attention weights αuv are computed from node features:

αuv =
exp(f(hu, hv))∑

w∈N (v) exp(f(hw, hv))
(5.12)

The scoring function f (typically a small network or inner product) computes how relevant

neighbor u is for node v. The softmax ensures weights sum to 1.

Why attention helps. Consider predicting a molecule’s reactivity. A carbon atom may have

several neighbors, but not all matter equally—the oxygen in a carbonyl group matters more than

a distant methyl. Attention learns these patterns from data.

Attention also provides some (limited) interpretability: the learned weights αuv show which

neighbors influenced each node’s representation.

6 Attention as a unifying primitive

Attention is a general mechanism that unifies several architectures. The core operation is always

the same: compute a weighted combination of inputs. What varies is which inputs participate

and whether the weights are fixed or content-dependent. Figure 13 illustrates the four main

patterns.

12

DS 595: AI Methods for Science Spring 2026

Standard GNN

hi

ha
hb

hc

hd
All neighbors equal

Graph Attention

hi

ha
hb

hc

hd

0.1
0.5

0.3

0.1

Learned αji weights

αji =
exp(f(hj ,hi))∑

k∈N(i) exp(f(hk,hi))
h′i =

∑
j∈N (i) αji · ψ(hj)

Figure 12. Graph attention learns which neighbors matter. Left: standard GNN weights all neighbors

equally. Right: attention weights neighbors by learned relevance scores αji, allowing the network to focus

on the most informative connections.

MLP
dense (fixed)

CNN
local (fixed)

GNN
sparse (learned)

Transformer
dense (learned)

Arrow thickness ∝ attention weight αij

Figure 13. Attention patterns across architectures. Dark nodes are queries; arrows show which inputs

contribute. MLP: all inputs, fixed weights. CNN: local inputs, fixed weights (same kernel everywhere).

GNN: graph neighbors, learned weights. Transformer: all inputs, learned weights. Arrow thickness

indicates attention weight.

The general form. Given a query q, keys k1, . . . , kn, and values v1, . . . , vn:

output =

n∑
i=1

αi · vi, where αi =
exp(q · ki)∑
j exp(q · kj)

(6.1)

The query asks “what am I looking for?” The keys say “what do I contain?” The dot product

measures relevance. This is scaled dot-product attention, the building block of Transformers.

CNNs as fixed local attention. A convolution computes:

hij =
∑
a,b

Wab · xi+a,j+b (6.2)

This is attention where the weights Wab are fixed (learned once, used everywhere) and the neigh-

borhood is local (only nearby pixels). The “attention pattern” is the same at every position—a

fixed 3× 3 or 5× 5 window.

GNNs as sparse attention. Graph attention computes:

hv =
∑

u∈N (v)

αuv · ψ(hu) (6.3)

13

DS 595: AI Methods for Science Spring 2026

The weights αuv are content-dependent (computed from node features), but attention is restricted

to graph neighbors. The graph structure determines who can attend to whom; the attention

mechanism determines how much.

Transformers as dense attention. Self-attention in Transformers:

hi =

n∑
j=1

αij · vj , αij = softmaxj(qi · kj/
√
d) (6.4)

Every position attends to every other position. No locality constraint, no predefined graph. The

attention weights are entirely learned from content. This is maximally flexible but costs O(n2)

computation.

MLPs as structure-free mixing. Where do MLPs fit? A fully connected layer computes:

hi =

n∑
j=1

Wij · xj (6.5)

Every output depends on every input, with fixed learned weightsWij . This is like dense attention

but without content-dependence—the “attention pattern” is baked into the weights at training

time and doesn’t adapt to the input. MLPs assume no structure: no locality, no graph, no notion

of which inputs should interact. Maximum flexibility, but also maximum data requirements.

The tradeoff. These four represent different points on a structure-flexibility spectrum:

MLP Transformer GNN CNN

Pattern Dense global Dense global Sparse (graph) Fixed local

Weights Fixed Content-dep. Content-dep. Fixed

Connectivity All pairs All pairs Graph neighbors Grid neighbors

Structure assumed None Weak Medium Strong

Reading left to right: MLPs assume no structure (any input can affect any output). Trans-

formers add content-dependent weights that adapt to each input. GNNs restrict connectivity to

graph neighbors. CNNs add the strongest prior: local, translation-invariant patterns.

7 Why overparameterized networks work

Modern neural networks have far more parameters than training examples. A ResNet for Im-

ageNet has 25 million parameters trained on 1.2 million images. Classical statistics says this

should overfit catastrophically—with enough parameters, you can memorize the training set and

learn nothing generalizable. Yet these networks generalize well. Why?

Traditional learning theory says: more parameters = more ways to fit noise = worse gen-

eralization. The optimal model complexity balances fitting the data against overfitting. Add

parameters until validation error starts rising. Neural networks violate this. They can interpo-

late—fit the training data perfectly, even with noisy labels—yet still generalize. The test error

doesn’t explode when you add more parameters past the interpolation threshold. Instead, it often

decreases (the “double descent” phenomenon).

14

DS 595: AI Methods for Science Spring 2026

Why interpolation doesn’t necessarily overfit. Among all functions that fit the training

data, SGD finds a particular one—and that one tends to be simple.

Think of it geometrically. In high dimensions, the set of parameters that perfectly fit the

training data is a large subspace (when you have more parameters than constraints). Within this

subspace, there are infinitely many solutions. Some are jagged and complex; others are smooth

and simple. SGD, starting from small random weights and taking small steps, tends to find

smooth solutions.

Overparameterization smooths the loss landscape. With more parameters, the loss land-

scape becomes better-behaved. Instead of one narrow valley, there are many paths to low loss, so

optimization is less likely to get stuck. Overparameterized networks tend to find flat minima—

regions where the loss is low over a large volume of parameter space—which correspond to simpler

functions that generalize better. Good solutions aren’t isolated points but form connected regions;

you can move between different good solutions without crossing high-loss barriers.

Inductive bias from optimization. The architecture constrains what the network can rep-

resent. But the optimizer constrains which of those representable functions it actually finds.

SGD with small learning rates, starting from small weights, has an implicit bias toward simpler

functions. This “implicit regularization” is as important as the explicit architecture. (We’ll come

back to this when discussing symmetry-based architectures.)

What this means in practice. Don’t fear overparameterization. A network with 10× more

parameters than data points may generalize better than a smaller one—if trained properly. The

combination of architecture (encoding the right symmetries) and optimization (finding smooth

solutions) produces good generalization even in the overparameterized regime.

A The QM9 dataset

QM9 is a benchmark dataset of 134,000 small organic molecules with quantum-mechanical prop-

erties computed from density functional theory (DFT). Each molecule contains up to 9 heavy

atoms (C, N, O, F) plus hydrogens. The dataset provides a concrete example of molecular prop-

erty prediction: given a molecule’s structure, predict its quantum properties without expensive

DFT calculations.

Molecules as graphs. A molecule is naturally represented as a graph: atoms are nodes, chem-

ical bonds are edges. This is the input to a GNN. Figure 14 shows the concrete representation.

Node features. Each atom is represented by an 11-dimensional feature vector:

Indices Feature Description

0–4 Atom type One-hot encoding (H, C, N, O, F)

5 Atomic number Integer (1, 6, 7, 8, 9)

6–8 Hybridization One-hot (sp, sp2, sp3)

9 Aromatic Binary (0 or 1)

10 Hydrogen count Number of attached hydrogens

15

DS 595: AI Methods for Science Spring 2026

(a) Molecule
C

C

C

O

(b) Graph structure

Node Atom Z nH

0 C 6 3

1 C 6 2

2 C 6 2

3 O 8 1

(c) Node features hi ∈ R11

QM9 molecule as graph: CCCO

Figure 14. QM9 data representation. (a) A molecule visualized with RDKit. (b) The same molecule as a

graph: heavy atoms are nodes, bonds are edges. Hydrogens are implicit—encoded in the nH feature rather

than as explicit nodes. (c) Each node has an 11-dimensional feature vector; nH indicates the number of

attached hydrogens.

Edge features. Each bond has a 4-dimensional feature vector: a one-hot encoding of bond

type (single, double, triple, aromatic). Edges are stored bidirectionally—each bond (i, j) appears

twice as directed edges i→ j and j → i.

Target properties. QM9 provides 19 quantum-mechanical properties for each molecule, in-

cluding:

• HOMO/LUMO energies: Frontier orbital energies (eV)

• HOMO-LUMO gap: Electronic excitation energy (eV)

• Dipole moment: Molecular polarity (Debye)

• Polarizability: Response to electric field (Bohr3)

• Thermodynamic properties: Internal energy, enthalpy, free energy, heat capacity

These properties determine a molecule’s electronic, optical, and thermodynamic behavior. Pre-

dicting them from structure alone—bypassing expensive DFT calculations—is the goal of molec-

ular property prediction.

QM9 is small enough to train on quickly but rich enough to benchmark different architec-

tures.This makes QM9 a good benchmark for comparing how different inductive biases affect

learning on the same underlying data.

16

	Modeling unknown functions
	Neural networks: composing simple functions
	Training deep networks
	Autoencoders: learning to compress
	Matching architecture to data structure
	Grids CNNs
	Sequences RNNs
	Sets and graphs Deep Sets and GNNs
	GNNs: adding relational structure

	Attention as a unifying primitive
	Why overparameterized networks work
	The QM9 dataset

