
· Symmetry-Preserving Neural Networks

“A molecule does not concern itself with the orientation of the coordinate axes.”

1 Symmetry in physical systems

A molecule’s energy doesn’t change if you rotate it or translate it through space. These are sym-

metries: transformations that leave physical quantities unchanged. In the previous chapter, we

saw how CNNs encode translation symmetry and GNNs encode permutation symmetry. Physical

systems often have additional continuous symmetries—rotations, translations, reflections—that

we can build into neural network architectures.

2 Invariance and equivariance

When we apply a symmetry transformation to the input, the output can respond in two funda-

mentally different ways.

Invariance. An invariant function produces the same output regardless of how the input is

transformed:

f(g · x) = f(x) (2.1)

Energy is the canonical example. Rotate a molecule by any angle, translate it anywhere in

space—the energy stays exactly the same. The function “doesn’t see” the transformation.

Equivariance. An equivariant function has outputs that transform consistently with the in-

puts:

f(g · x) = g · f(x) (2.2)

Forces are equivariant. Rotate a molecule, and the force vectors rotate with it. The force on atom

i still points in the same direction relative to the molecule—but in the lab frame, it has rotated

along with everything else. The function “sees” the transformation and responds accordingly.

The distinction matters for what you’re predicting. Scalar quantities—energy, charge, mass,

binding affinity—should be invariant. Vector quantities—forces, velocities, dipole moments—

should be equivariant. Per-atom outputs that describe spatial relationships (like predicted dis-

placements) should be equivariant.

1



DS 595: AI Methods for Science Spring 2026

Invariance (Energy)

O

H H

rotate R
O

H

H

E = −42.5 E = −42.5=

Equivariance (Force)

O

H H

F⃗ rotate R
O

H

H

RF⃗

Force rotates with molecule

Figure 1. Invariance vs. equivariance. (Top) Energy is invariant: rotating the molecule doesn’t change

its energy. (Bottom) Force is equivariant: rotating the molecule rotates the force vectors.

3 Building in translation invariance

Translation invariance is the easiest symmetry to encode: never use absolute positions.

If your input is atom positions {ri}, don’t feed raw coordinates into the network. Instead, use

quantities that are intrinsically translation-invariant: relative positions rij = ri−rj between pairs

of atoms, or distances dij = ∥ri − rj∥. Shift all atoms by the same vector, and these quantities

don’t change—the relative geometry is preserved.

This simple prescription eliminates an entire class of failure modes. Networks trained on

absolute positions can learn arbitrary correlations with the coordinate system, e.g. “molecules

centered at the origin have property X.”. These patterns may hold in the training set (if all

molecules happen to be centered) but reflect no physics. By using only relative quantities, we

make such spurious patterns impossible to learn.

4 Invariant networks: the simplest approach

The simplest way to achieve rotation invariance: only use distances. Distances dij = ∥xi−xj∥
don’t change under rotation. If your network only sees distances (never positions or relative

vectors), it’s automatically invariant.

SchNet-style architecture. Recall message passing from the previous chapter: each node i

in a graph updates its features by aggregating information from neighbors j ∈ N (i). SchNet [1]

makes this rotation-invariant by having messages depend only on distances:

h′i = hi +
∑

j∈N (i)

ϕ(hj) · w(dij) (4.1)

2



DS 595: AI Methods for Science Spring 2026

Each neighbor j sends a message ϕ(hj) weighted by a learned function of distance w(dij). The

network never sees coordinates directly—only pairwise distances. This guarantees rotation and

translation invariance.

hi

hj1

hj2

hj3
d
j
1 i

dj2
i

dj3
i

h′
i = hi +

∑
j

ϕ(hj) · w(dji)

Figure 2. SchNet-style invariant message passing. Each neighbor sends a message weighted by a learned

function of distance w(dji). The network only sees distances, never positions, ensuring rotation and

translation invariance.

Encoding distances. How should w(dij) depend on distance? A neural network needs a good

representation of the scalar dij . The standard approach: radial basis functions.

Expand the distance into a set of basis functions, typically Gaussians centered at different

values:

ek(d) = exp
(
−γ(d− µk)

2
)

(4.2)

with centers µk spaced from 0 to some cutoff (e.g., µk = 0, 0.5, 1.0, . . . , 5.0 Å). This gives a vector

[e1(d), e2(d), . . . , eK(d)] that the network can process with standard linear layers.

Why not just use d directly? A single scalar gives the network little to work with. The basis

expansion provides a richer representation: each basis function “activates” for distances near its

center, giving the network easy access to distance information at different scales.

0 1 2 3 4 5 6

Distance d (Å)

0.0

0.2

0.4

0.6

0.8

1.0

B
a
si

s
fu

n
ct

io
n

va
lu

e

e1 e2 e3 e4 e5

d = 2.7

(a) Radial basis functions

1 2 3 4 5

Basis function index k

0.0

0.2

0.4

0.6

0.8

1.0

e k
(d

)

(b) Encoding of d = 2.7 Å

Figure 3. Radial basis function encoding. (a) Five Gaussians centered at different distances. A vertical

line marks an example distance d = 2.7 Å; dots show where it intersects each basis function. (b) The

resulting encoding: a 5-dimensional vector where each entry is one basis function’s activation. One scalar

(distance) becomes a vector the network can process.

3



DS 595: AI Methods for Science Spring 2026

Cutoff functions. Atoms far apart don’t interact much. For efficiency (and physics), we

restrict to neighbors within a cutoff radius rc:

w̃(d) = w(d) · fcut(d) (4.3)

where fcut(d) smoothly goes to zero as d → rc. A common choice:

fcut(d) =

1
2

[
cos

(
πd
rc

)
+ 1

]
d < rc

0 d ≥ rc
(4.4)

Smooth cutoffs matter: discontinuities in the energy would cause infinite forces.

5 Equivariant networks: when you need vectors

Invariant networks predict scalars. But what if you need vector outputs—forces, velocities, dipole

moments? These should rotate with the input, and in this case we need to encode equivariance.

Scalar and vector features. The key idea is to maintain two types of features at each node:

scalar features hi ∈ Rd that are invariant to rotation, and vector features v⃗i ∈ R3×d that rotate

with the input.

How can we combine these without breaking equivariance? Scalars are flexible—you can

add them, multiply them, pass them through any nonlinearity you like. Vectors are more con-

strained: you can add vectors and scale them by scalars, but you cannot pass them through

elementwise nonlinearities like ReLU. Applying ReLU(vx, vy, vz) component-wise would break

rotation equivariance—the result depends on how the coordinate axes are oriented.

The allowed operations form an algebra: inner products of vectors produce scalars (the dot

product is rotation-invariant), and scalars times vectors produce vectors (scaling doesn’t break

equivariance). These constraints may seem limiting, but they’re enough to build powerful archi-

tectures.

The EGNN approach. EGNN [2] is a simple and effective equivariant architecture. Each

node has an embedding hi ∈ Rd and a coordinate xi ∈ R3. The layer updates both:

mij = ϕe(hi, hj , ∥xi − xj∥2, aij) (scalar edge messages) (5.1)

x′i = xi +
∑
j ̸=i

(xi − xj)ϕx(mij) (coordinate update) (5.2)

h′i = ϕh

hi,
∑
j

mij

 (feature update) (5.3)

Why is this equivariant? The construction is careful. Edge messages mij depend only on

squared distances ∥xi − xj∥2, which are rotation-invariant—no directional information leaks in.

The coordinate update uses relative positions (xi − xj), which are vectors that rotate with the

input: if you rotate all coordinates by R, these vectors rotate by R too. The update direction

is then scaled by a learned scalar ϕx(mij)—and scalar times vector gives a vector that rotates

correctly. Rotate all input coordinates by a matrix R, and all output coordinates rotate by the

same R. The network is E(3)-equivariant by construction.

4



DS 595: AI Methods for Science Spring 2026

Handling velocities. For dynamical systems, particles have velocities in addition to positions.

Velocities are vectors—they rotate with the coordinate system just like positions. The original

EGNN paper [2] introduces a velocity-aware variant for learning dynamics. The key modification

replaces the coordinate update with:

x′i = xi + vi · ϕv(hi) +
∑
j ̸=i

(xi − xj)ϕx(mij) (5.4)

where ϕv is a learned scalar function of the node features. The velocity vector vi contributes

to the position update, scaled by a learned factor—this maintains equivariance because scalar

times vector transforms correctly. The velocity itself can be updated similarly, using the same

equivariant pattern as coordinates. This formulation lets EGNN learn particle dynamics (like

charged particles interacting via Coulomb forces) while respecting rotational symmetry.

Before

i

j1 j2

j3

dij1 dij2

dij3

mj1i mj2i

mj3i

After

i

j1 j2

j3

∆xi

mij = ϕe(hi, hj , d
2
ij) (uses distance, not position)

x′
i = xi +

∑
j(xi − xj)ϕx(mij) (uses relative

vectors)

Figure 4. EGNN message passing. Scalar messages depend only on distances (rotation-invariant). Co-

ordinate updates use relative position vectors (xi − xj), which rotate with the input. The combination

ensures the network is E(3)-equivariant.

Beyond vectors: spherical harmonics.— Scalars and vectors aren’t the only geometric objects.

Think about what happens when you rotate the coordinate system:

• A scalar (like energy) doesn’t change at all.

• A vector (like a force) rotates with the coordinates—its three components mix together

according to the rotation matrix R.

• A quadrupole (like the moment of inertia tensor) transforms in a more complicated

way—it has five independent components that mix under rotation.

This pattern continues: there’s a hierarchy of geometric objects labeled by ℓ = 0, 1, 2, . . .,

with 2ℓ+1 components each. These are the irreducible representations of the rotation group.

5



DS 595: AI Methods for Science Spring 2026

Spherical harmonics Y m
ℓ (r̂) provide a concrete basis for each level. You may know

them from quantum mechanics: ℓ = 0 is an s-orbital (spherical), ℓ = 1 gives p-orbitals (three

lobes along x, y, z), ℓ = 2 gives d-orbitals (five cloverleaf patterns), and so on. They form a

complete basis for any angular pattern on a sphere.

More advanced equivariant networks—NequIP [3], MACE [4], Allegro [5]—represent fea-

tures as collections of spherical harmonic components at each atom. The key operation is the

tensor product : combining two spherical harmonic features (say, ℓ = 1 and ℓ = 1) produces

features at multiple orders (ℓ = 0, 1, 2). The coefficients governing this combination are

called Clebsch-Gordan coefficients—fixed numbers from representation theory, not learned

parameters.

The payoff is these networks capture directional interactions that scalar/vector archi-

tectures miss, like the angular dependence of chemical bonds or the anisotropy of crystal

environments. The cost: mathematical and computational complexity. For a comprehensive

introduction, see [6].

6 Forces from energy: equivariance for free

Suppose you train an invariant network to predict energy E({xi}). The forces are gradients:

Fi = −∇xiE (6.1)

If E is rotation-invariant, then Fi is automatically rotation-equivariant.

Working through it: Let R be a rotation matrix. Invariance means E(R{xi}) = E({xi}).
Differentiate both sides with respect to xi:

R⊤∇RxiE = ∇xiE (6.2)

So ∇RxiE = R∇xiE. The gradient at the rotated position equals the rotated gradient at the

original position. That’s equivariance.

The practical payof is that we can train a simple invariant network on energies and get forces

for free by automatic differentiation. The forces are then exactly equivariant. This is how

most modern machine learning potentials work: learn E, differentiate to get F , run molecular

dynamics. More generally: symmetries of a function imply symmetries of its derivatives.

Build invariance into your energy predictor, and equivariance of forces follows automatically.

7 Why encode symmetry?

Why go through the trouble of building symmetry into architectures? After all, neural networks

are universal approximators—with enough data, shouldn’t they learn any symmetry implicitly?

The advantage of encoding symmetry is largest with smaller datasets (less data to learn the

symmetry implicitly), larger symmetry groups (more transformations to cover by augmentation),

and stricter symmetry requirements (when approximate invariance isn’t good enough—e.g., forces

must be exactly equivariant for stable molecular dynamics).

6



DS 595: AI Methods for Science Spring 2026

Data augmentation: the alternative. Instead of encoding symmetry in the architecture,

we can augment the training data: for each molecule, include rotated copies. The network sees

all orientations and (hopefully) learns that orientation doesn’t matter.

This works, but has costs—training on N rotations multiplies compute by N . The network

learns approximate invariance—close to exact, but not perfect.

Data efficiency. An equivariant network doesn’t need to see every rotation of every molecule—

it knows that rotations preserve energy. A standard network must learn this from augmented

data, requiring many more examples. When labeled data is scarce (common in science, where

each label may require expensive simulations or experiments), equivariance can be the difference

between a useful model and an overfit one.

Figure 5 illustrated this: equivariant networks (using higher-order spherical harmonic features,

L ≥ 1) achieve lower error at every training set size, with steeper improvement as data increases

(more favorable scaling).

Figure 5. Data efficiency of equivariant networks. Force prediction error vs. training set size for water

molecules. L = 0 uses only scalars (invariant); L ≥ 1 includes vector and higher-order equivariant features.

Equivariant networks achieve lower error at all training set sizes. Figure from [3].

Can augmentation catch up? With enough epochs, yes—but at a cost. Recent scaling

studies [7] show that training non-equivariant networks with data augmentation can eventually

match equivariant performance, but only when training for many more epochs on the same data.

In the small-data regime where you’d train for thousands of epochs anyway, augmentation closes

the gap. In the large-data regime where each sample is seen only once or a few times, equivariant

networks maintain their advantage.

Compute efficiency. Even with infinite data, equivariant networks remain more efficient. At

any fixed compute budget—measured in floating-point operations—equivariant models outper-

form non-equivariant ones trained with augmentation (Figure 6). Both model classes follow

power-law scaling: double your compute, and the loss decreases by a predictable factor. But

equivariant models maintain a consistent advantage across all tested compute budgets—roughly

a factor of two in this benchmark. The symmetry constraint focuses learning capacity on the

7



DS 595: AI Methods for Science Spring 2026

degrees of freedom that matter, rather than wasting capacity re-learning that rotations preserve

energy.

1016 1017 1018 1019

Training compute [nominal FLOPs]

10 5

10 4

Lo
ss

Baseline
Equivariant

Figure 6. Compute scaling of equivariant vs. non-equivariant transformers on a rigid-body dynamics

task. Both follow power-law scaling, but the equivariant model (red) consistently outperforms the non-

equivariant baseline (blue) at every compute budget. The advantage persists even with large-scale training.

Figure from [7].

When augmentation wins. If the symmetry is only approximate, strict equivariance may

be too strong. Images have gravity—up and down aren’t equivalent. Molecules in solvent or on

surfaces break full rotation symmetry. In these cases, learning an approximate symmetry from

data may be more appropriate than enforcing an exact one. Augmentation also applies to any

architecture without redesigning the model, which matters when leveraging pretrained models or

established codebases.

Equivariance as a building block. The architectures in this chapter are not standalone mod-

els but composable components. Diffusion models for molecules use equivariant score networks

to ensure the learned distribution respects rotational symmetry. Machine learning potentials use

equivariant networks to predict forces that transform correctly—critical for conserving angular

momentum in long simulations. The design principles transfer beyond molecules to any domain

with geometric structure: point clouds, meshes, robotics, physical simulations.

References

[1] Kristof T Schütt, Pieter-Jan Kindermans, Huziel E Sauceda, Stefan Chmiela, Alexandre Tkatchenko,

and Klaus-Robert Müller. SchNet: A continuous-filter convolutional neural network for modeling

8



DS 595: AI Methods for Science Spring 2026

quantum interactions. In Advances in Neural Information Processing Systems, volume 30, pages

992–1002, 2017.

[2] Vı́ctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural

networks. In International Conference on Machine Learning, pages 9323–9332. PMLR, 2021.

[3] Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai

Kornbluth, Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E(3)-equivariant graph neural

networks for data-efficient and accurate interatomic potentials. Nature Communications, 13(1):2453,

2022.

[4] Ilyes Batatia, Dávid Péter Kovács, Gregor NC Simm, Christoph Ortner, and Gábor Csányi. MACE:

Higher order equivariant message passing neural networks for fast and accurate force fields. In

Advances in Neural Information Processing Systems, volume 35, pages 11423–11436, 2022.

[5] Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J Owen, Mordechai

Kornbluth, and Boris Kozinsky. Learning local equivariant representations for large-scale atomistic

dynamics. Nature Communications, 14(1):579, 2023.

[6] Alexandre Duval, Simon V Mathis, Chaitanya K Joshi, Victor Schmidt, Santiago Miret,

Fragkiskos D Malliaros, Taco Cohen, Pietro Liò, Yoshua Bengio, and Michael Bronstein. A

hitchhiker’s guide to geometric GNNs for 3D atomic systems. arXiv preprint arXiv:2312.07511, 2023.

[7] Johann Brehmer, Sönke Behrends, Pim de Haan, and Taco Cohen. Does equivariance matter at

scale? Transactions on Machine Learning Research, 2025.

9


	Symmetry in physical systems
	Invariance and equivariance
	Building in translation invariance
	Invariant networks: the simplest approach
	Equivariant networks: when you need vectors
	Forces from energy: equivariance for free
	Why encode symmetry?

